Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Elastic recoil detection
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Elastic_recoil_detection
http://dbpedia.org/ontology/abstract 탄성반도측정법(Elastic Recoil Detection Analysis,탄성반도측정법(Elastic Recoil Detection Analysis, ERDA) 또는 탄성되튐측정법은 재료과학에서 박막의 깊이에 따른 원소별 농도 프로파일을 얻기 위해 이온 빔을 이용하는 분석 기법이다. 전방산란분석법(forward recoil spectroscopy, FRS 또는 FRES)이라고도 한다. ERDA에서는 큰 에너지의 이온 빔을 분석할 표본에 입사하면 빔의 이온과 표본 원자의 핵자가 탄성 상호작용을 일으키게 된다. 이러한 상호작용은 쿨롱 법칙을 따르는 것이다. 이온의 동역학, 단면의 넓이, 물질 내부에서 이온의 에너지가 손실되는 정도 등을 이용함으로써 탄성반도측정법은 정량적인 원소 분석을 가능하게 해주며, 표본의 깊이에 따른 프로파일을 제공한다. 입사되는 이온은 2 MeV에서 200 MeV까지 넓은 범위의 에너지를 가질 수 있다. 에너지는 연구 대상이 되는 표본이 무엇이냐에 따라 달리 결정하는데, 샘플의 원자를 튕겨낼(recoil) 수 있을 정도로 충분히 크면 된다. 따라서 ERDA를 위해서는 적절한 이온 빔 공급원이 필요하고 반동되는(recoiled) 원자를 검출하기 위한 검출기도 있어야 한다.하고 반동되는(recoiled) 원자를 검출하기 위한 검출기도 있어야 한다. , 弹性反冲探测分析技术(Elastic Recoil Detection Analysis,ERDA), 也被称作前向反冲散射(谱),是一种离子束分析技术,被用在材料科学中,用以分析、测量固体或薄膜材料中某种元素的深度分布。 使用加速器将某一能量的离子束打到待测样品上,离子与靶固体中的某种元素的原子发生弹性碰撞,一般是由库仑力造成的。通过入射离子的动能、弹性碰撞反应截面、散射离子损失的能量等参数,可以检测待测原子在样品中不同深度的富集程度,即不同深度处某种原子所占的比例。 , Elastic recoil detection analysis (ERDA), Elastic recoil detection analysis (ERDA), also referred to as forward recoil scattering (or, contextually, spectrometry), is an ion beam analysis technique in materials science to obtain elemental concentration depth profiles in thin films. This technique is known by several different names. These names are listed below. In the technique of ERDA, an energetic ion beam is directed at a sample to be characterized and (as in Rutherford backscattering) there is an elastic nuclear interaction between the ions of beam and the atoms of the target sample. Such interactions are commonly of Coulomb nature. Depending on the kinetics of the ions, cross section area, and the loss of energy of the ions in the matter, ERDA helps determine the quantification of the elemental analysis. It also provides information about the depth profile of the sample. The incident energetic ions can have a wide range of energy from 2 MeV to 200 MeV. The energy of the beam depends on the sample to be studied. The energy of the beam should be enough to kick out (“recoil”) the atoms of the sample. Thus, ERD usually employs appropriate source and detectors to detect recoiled atoms. However, such an experimental setup is expensive and along with a source requirement of high-energy ions appears to make this technique relatively less commonly used for materials characterization, but is nevertheless commercially available. Moreover, the angle of incidence that an ion beam makes with the sample must also be taken into account for correct analysis of the sample. This is because, depending on this angle, the recoiled atoms will be collected. Although it is not very clear, the assumption for why this technique is not very well known would be because it is hard to have a perfect combination of the source, the angle of incidence, and the detector to have the best characterization of the sample. Such problem would make the technique very time consuming and tedious. This article provides information about ERDA that has been around for a long time, since the mid-1970s. The article provides detailed information about the high ion incident ERDA. However, low ion incident ERDA is still not neglected. The comparative analysis of overall ERDA with other techniques such as TEM, AFM, XRR, NR, VASE, XPS, and DSIMS is also mentioned. The article briefly touches upon the history of ERDA but the main focus is on the technique itself. Comprehensive information on the instrumentation as well as its applications in elemental characterization and depth profile are provided. ERDA and RBS have similar theory but minor differences in the set-up of the experiment. In case of RBS, the detector is placed in the back of the sample whereas in ERDA, the detector is placed in the front.ERDA, the detector is placed in the front. , Elastische Rückstreudetektionsanalyse (ElaElastische Rückstreudetektionsanalyse (Elastic Recoil Detection Analysis, kurz ERDA) ist eine Methode in der Physik und Materialwissenschaft, um Aussagen über Materialzusammensetzungen zu gewinnen. Bei der ERDA wird ein Teilchenstrahl schwerer Ionen (z. B. Ar, Ni, Kr oder Xe) auf eine Probe geschossen. Die Teilchenenergie liegt dabei im Bereich von 0,5 – 3 MeV pro Nukleon. Im Gegensatz zu Rutherford-Backscattering-Spectrometry- (RBS-) Analysen wird hierbei unter Vorwärtswinkeln detektiert. Des Weiteren wird nicht der gestreute Teilchenstrahl selbst, sondern die von diesem aus der Probe gestreuten Teilchen nachgewiesen.Mittels eines E-E-Zählers kann somit nicht nur die Energie des Teilchens, das gestreut wurde, nachgewiesen werden (wie bei RBS), sondern auch um welches Teilchen es sich handelt. ERDA-Messungen werden vor allem zur Detektion leichter Elemente verwendet. Entsprechend stellt ERDA ein komplementäres Verfahren zu RBS dar.A ein komplementäres Verfahren zu RBS dar.
http://dbpedia.org/ontology/thumbnail http://commons.wikimedia.org/wiki/Special:FilePath/Image_of_a_Van_de_Graaff_generator_coupled_with_a_particle_accelerator.jpg?width=300 +
http://dbpedia.org/ontology/wikiPageExternalLink https://web.archive.org/web/20140508061146/http:/www.nscl.msu.edu/tech/ionsources +
http://dbpedia.org/ontology/wikiPageID 2321375
http://dbpedia.org/ontology/wikiPageLength 85627
http://dbpedia.org/ontology/wikiPageRevisionID 1100705779
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Elemental_analysis + , http://dbpedia.org/resource/Ions + , http://dbpedia.org/resource/Materials_science + , http://dbpedia.org/resource/Thin_films + , http://dbpedia.org/resource/Transmission_electron_microscopy + , http://dbpedia.org/resource/Rutherford_backscattering_spectrometry + , http://dbpedia.org/resource/Van_de_Graaff_generator + , http://dbpedia.org/resource/Ion_beam + , http://dbpedia.org/resource/X-ray_reflectivity + , http://dbpedia.org/resource/Category:Materials_science + , http://dbpedia.org/resource/Cross_section_%28physics%29 + , http://dbpedia.org/resource/Energy + , http://dbpedia.org/resource/Atomic_force_microscopy + , http://dbpedia.org/resource/Kinetics_%28physics%29 + , http://dbpedia.org/resource/Angle_of_incidence_%28optics%29 + , http://dbpedia.org/resource/X-ray_photoelectron_spectroscopy + , http://dbpedia.org/resource/Cyclotron_frequency + , http://dbpedia.org/resource/Coulomb%27s_law + , http://dbpedia.org/resource/Frisch_grid + , http://dbpedia.org/resource/File:Gas_ionization_chamber_%281%29.png + , http://dbpedia.org/resource/File:Image_of_a_Van_de_Graaff_generator_coupled_with_a_particle_accelerator.JPG + , http://dbpedia.org/resource/File:ERDA6.png + , http://dbpedia.org/resource/File:Energy_Straggling_Effect.jpg + , http://dbpedia.org/resource/Neutron_reflectometry + , http://dbpedia.org/resource/File:ERDA1.jpg + , http://dbpedia.org/resource/File:ERDA2.jpg + , http://dbpedia.org/resource/File:3-_d_picture_final.jpg + , http://dbpedia.org/resource/File:Angular_deviation_MS.png + , http://dbpedia.org/resource/Atoms +
http://dbpedia.org/property/date February 2018
http://dbpedia.org/property/reason Layout of mathematical formulas.
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Reflist + , http://dbpedia.org/resource/Template:Cleanup +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Materials_science +
http://purl.org/linguistics/gold/hypernym http://dbpedia.org/resource/Technique +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Elastic_recoil_detection?oldid=1100705779&ns=0 +
http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/Angular_deviation_MS.png + , http://commons.wikimedia.org/wiki/Special:FilePath/Image_of_a_Van_de_Graaff_generator_coupled_with_a_particle_accelerator.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Energy_Straggling_Effect.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/3-_d_picture_final.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/ERDA2.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/ERDA6.png + , http://commons.wikimedia.org/wiki/Special:FilePath/ERDA1.jpg + , http://commons.wikimedia.org/wiki/Special:FilePath/Gas_ionization_chamber_%281%29.png +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Elastic_recoil_detection +
owl:sameAs https://global.dbpedia.org/id/MRUN + , http://dbpedia.org/resource/Elastic_recoil_detection + , http://de.dbpedia.org/resource/Elastische_R%C3%BCckstreudetektionsanalyse + , http://www.wikidata.org/entity/Q1324945 + , http://ko.dbpedia.org/resource/%ED%83%84%EC%84%B1%EB%B0%98%EB%8F%84%EC%B8%A1%EC%A0%95%EB%B2%95 + , http://zh.dbpedia.org/resource/%E5%BC%B9%E6%80%A7%E5%8F%8D%E5%86%B2%E6%8E%A2%E6%B5%8B%E5%88%86%E6%9E%90 + , http://rdf.freebase.com/ns/m.073n3p +
rdf:type http://dbpedia.org/ontology/TopicalConcept +
rdfs:comment Elastic recoil detection analysis (ERDA), Elastic recoil detection analysis (ERDA), also referred to as forward recoil scattering (or, contextually, spectrometry), is an ion beam analysis technique in materials science to obtain elemental concentration depth profiles in thin films. This technique is known by several different names. These names are listed below. In the technique of ERDA, an energetic ion beam is directed at a sample to be characterized and (as in Rutherford backscattering) there is an elastic nuclear interaction between the ions of beam and the atoms of the target sample. Such interactions are commonly of Coulomb nature. Depending on the kinetics of the ions, cross section area, and the loss of energy of the ions in the matter, ERDA helps determine the quantification of the elemental analysis. It also provides infe elemental analysis. It also provides inf , 弹性反冲探测分析技术(Elastic Recoil Detection Analysis,ERDA), 也被称作前向反冲散射(谱),是一种离子束分析技术,被用在材料科学中,用以分析、测量固体或薄膜材料中某种元素的深度分布。 使用加速器将某一能量的离子束打到待测样品上,离子与靶固体中的某种元素的原子发生弹性碰撞,一般是由库仑力造成的。通过入射离子的动能、弹性碰撞反应截面、散射离子损失的能量等参数,可以检测待测原子在样品中不同深度的富集程度,即不同深度处某种原子所占的比例。 , Elastische Rückstreudetektionsanalyse (ElaElastische Rückstreudetektionsanalyse (Elastic Recoil Detection Analysis, kurz ERDA) ist eine Methode in der Physik und Materialwissenschaft, um Aussagen über Materialzusammensetzungen zu gewinnen. Bei der ERDA wird ein Teilchenstrahl schwerer Ionen (z. B. Ar, Ni, Kr oder Xe) auf eine Probe geschossen. Die Teilchenenergie liegt dabei im Bereich von 0,5 – 3 MeV pro Nukleon. Im Gegensatz zu Rutherford-Backscattering-Spectrometry- (RBS-) Analysen wird hierbei unter Vorwärtswinkeln detektiert. Des Weiteren wird nicht der gestreute Teilchenstrahl selbst, sondern die von diesem aus der Probe gestreuten Teilchen nachgewiesen.Mittels eines E-E-Zählers kann somit nicht nur die Energie des Teilchens, das gestreut wurde, nachgewiesen werden (wie bei RBS), sondern auch um welches Teilchen es sich handdern auch um welches Teilchen es sich hand , 탄성반도측정법(Elastic Recoil Detection Analysis,탄성반도측정법(Elastic Recoil Detection Analysis, ERDA) 또는 탄성되튐측정법은 재료과학에서 박막의 깊이에 따른 원소별 농도 프로파일을 얻기 위해 이온 빔을 이용하는 분석 기법이다. 전방산란분석법(forward recoil spectroscopy, FRS 또는 FRES)이라고도 한다. ERDA에서는 큰 에너지의 이온 빔을 분석할 표본에 입사하면 빔의 이온과 표본 원자의 핵자가 탄성 상호작용을 일으키게 된다. 이러한 상호작용은 쿨롱 법칙을 따르는 것이다. 이온의 동역학, 단면의 넓이, 물질 내부에서 이온의 에너지가 손실되는 정도 등을 이용함으로써 탄성반도측정법은 정량적인 원소 분석을 가능하게 해주며, 표본의 깊이에 따른 프로파일을 제공한다. 입사되는 이온은 2 MeV에서 200 MeV까지 넓은 범위의 에너지를 가질 수 있다. 에너지는 연구 대상이 되는 표본이 무엇이냐에 따라 달리 결정하는데, 샘플의 원자를 튕겨낼(recoil) 수 있을 정도로 충분히 크면 된다. 따라서 ERDA를 위해서는 적절한 이온 빔 공급원이 필요하고 반동되는(recoiled) 원자를 검출하기 위한 검출기도 있어야 한다.하고 반동되는(recoiled) 원자를 검출하기 위한 검출기도 있어야 한다.
rdfs:label 탄성반도측정법 , Elastic recoil detection , Elastische Rückstreudetektionsanalyse , 弹性反冲探测分析
hide properties that link here 
http://dbpedia.org/resource/ERD + http://dbpedia.org/ontology/wikiPageDisambiguates
http://dbpedia.org/resource/Hydrogen_forward_scattering + http://dbpedia.org/ontology/wikiPageRedirects
http://dbpedia.org/resource/Erda + , http://dbpedia.org/resource/Rutherford_backscattering_spectrometry + , http://dbpedia.org/resource/Index_of_physics_articles_%28E%29 + , http://dbpedia.org/resource/Nuclear_reaction_analysis + , http://dbpedia.org/resource/ETH_Zurich + , http://dbpedia.org/resource/Potential_applications_of_carbon_nanotubes + , http://dbpedia.org/resource/List_of_materials_analysis_methods + , http://dbpedia.org/resource/Ion_beam_analysis + , http://dbpedia.org/resource/ERD + , http://dbpedia.org/resource/Electrostatic_particle_accelerator + , http://dbpedia.org/resource/Hydrogen_forward_scattering + , http://dbpedia.org/resource/Forward_recoil_scattering + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Elastic_recoil_detection + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Elastic_recoil_detection + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.