Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Solid state ionics
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Solid_state_ionics
http://dbpedia.org/ontology/abstract 固体イオニクスとは、固体電解質とその用途に関する研究である。一部の原料は水晶や多結晶からなる固体、セラミック、ガラス、ポリマーなどである。固体酸化物形燃料電池のような固体イオニクスを用いた装置は、厳しい条件化において液体電解質を用いた装置より信頼性が高く長持ちする。 最新の調査ではアジアでは一次研究や応用的な研究に利用され、欧米では主に自動車産業が主導する研究に応用されている。一部の研究はアメリカ国防総省の支援を受けている。 , La ionica dello stato solido è la branca dLa ionica dello stato solido è la branca dell'elettrochimica che si concentra sullo studio e l'impiego degli elettroliti solidi (tra cui solidi inorganici cristallini e policristallini, materiali ceramici, vetri, materiali polimerici e materiali compositi). Nei materiali solidi si hanno in genere due meccanismi di trasporto di carica elettrica: il trasporto di elettroni (e lacune elettroniche) e il trasporto di ioni; a differenza dell'"elettronica", che pone l'attenzione sul trasporto degli elettroni, la "" si sofferma sullo studio del trasporto degli ioni. I solidi comunque presentano in genere un'elevata resistività elettrica, obiettivo della ricerca della ionica dello stato solido è ottenere dei materiali solidi aventi un'elevata conducibilità elettrica.aventi un'elevata conducibilità elettrica. , 固态离子学是一门研究及其应用的学科。属于这个范畴的材料包括无机晶体和多晶固体、陶瓷、固态离子学是一门研究及其应用的学科。属于这个范畴的材料包括无机晶体和多晶固体、陶瓷、玻璃、聚合物和复合物。类似固体氧化物燃料电池的固态离子器件,相比基于液态电解质的器件,具有更高的可靠性和工作寿命,特别是在苛刻的工作条件下。 固态离子学起源于欧洲,肇始于1834年麥可·法拉第对于固态电解质 Ag2S 和 PbF2 的研究。随后的基础性贡献来自于瓦爾特·能斯特,他推导出了能斯特方程,并在异价掺杂的二氧化锆中观察到了离子传导现象。他利用这个现象发明了。另一个重要的进步来自于1914年对于碘化银的表征和研究。1930年左右,雅科夫·弗伦克尔、華特·蕭特基、等人建立起了点缺陷的概念,肖特基和瓦格纳同时也发展了点缺陷的热力学理论。这些理论有助于理解在离子晶体、离子导电玻璃、聚合物电解质和纳米复合物中的离子和电子输运现象。在20世纪末21世纪初,固态离子学领域的工作主要集中于合成和表征各类新型的固态电解质材料,并将它们用于固态电池、燃料电池和传感器。要集中于合成和表征各类新型的固态电解质材料,并将它们用于固态电池、燃料电池和传感器。 , Solid-state ionics is the study of ionic-eSolid-state ionics is the study of ionic-electronic mixed conductor and fully ionic conductors (solid electrolytes) and their uses. Some materials that fall into this category include inorganic crystalline and polycrystalline solids, ceramics, glasses, polymers, and composites. Solid-state ionic devices, such as solid oxide fuel cells, can be much more reliable and long-lasting, especially under harsh conditions, than comparable devices with fluid electrolytes. The field of solid-state ionics was first developed in Europe, starting with the work of Michael Faraday on solid electrolytes Ag2S and PbF2 in 1834. Fundamental contributions were later made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he applied in his Nernst lamp. Another major step forward was the characterization of silver iodide in 1914. Around 1930, the concept of point defects was established by Yakov Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner; this helped explain ionic and electronic transport in ionic crystals, ion-conducting glasses, polymer electrolytes and nanocomposites. In the late 20th and early 21st centuries, solid-state ionics focused on the synthesis and characterization of novel solid electrolytes and their applications in solid state battery systems, fuel cells and sensors. The term solid state ionics was coined in 1967 by Takehiko Takahashi, but did not become widely used until the 1980s, with the emergence of the journal Solid State Ionics. The first international conference on this topic was held in 1972 in Belgirate, Italy, under the name "Fast Ion Transport in Solids, Solid State Batteries and Devices".olids, Solid State Batteries and Devices".
http://dbpedia.org/ontology/thumbnail http://commons.wikimedia.org/wiki/Special:FilePath/Power-energy_for_energy_storage_systems.png?width=300 +
http://dbpedia.org/ontology/wikiPageID 21227565
http://dbpedia.org/ontology/wikiPageLength 26828
http://dbpedia.org/ontology/wikiPageRevisionID 1092456316
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Polyethylene_oxide + , http://dbpedia.org/resource/Copolymer + , http://dbpedia.org/resource/Artificial_pacemaker + , http://dbpedia.org/resource/Fuel_cell + , http://dbpedia.org/resource/Nernst_lamp + , http://dbpedia.org/resource/Lead_acid_battery + , http://dbpedia.org/resource/Chemical_potential + , http://dbpedia.org/resource/Grain_boundaries + , http://dbpedia.org/resource/Michael_Faraday + , http://dbpedia.org/resource/Lithium_iodide + , http://dbpedia.org/resource/Ion + , http://dbpedia.org/resource/Zirconia + , http://dbpedia.org/resource/Electrode + , http://dbpedia.org/resource/Jacobus_Henricus_van_%27t_Hoff + , http://dbpedia.org/resource/Daniell_cell + , http://dbpedia.org/resource/Electrolysis + , http://dbpedia.org/resource/Solid_electrolyte + , http://dbpedia.org/resource/Proton_exchange_membrane_fuel_cell + , http://dbpedia.org/resource/Isotropic + , http://dbpedia.org/resource/Nernst_equation + , http://dbpedia.org/resource/Nanoionics + , http://dbpedia.org/resource/Svante_Arrhenius + , http://dbpedia.org/resource/Faraday_constant + , http://dbpedia.org/resource/Polyelectrolyte + , http://dbpedia.org/resource/Category:Electrochemistry + , http://dbpedia.org/resource/Alessandro_Volta + , http://dbpedia.org/resource/Solid_oxide_fuel_cell + , http://dbpedia.org/resource/File:M_Faraday_Th_Phillips_oil_1842.jpg + , http://dbpedia.org/resource/Smart_glass + , http://dbpedia.org/resource/Mixed_conductor + , http://dbpedia.org/resource/Anode + , http://dbpedia.org/resource/File:Ionic_conductivity_of_silver_halides.png + , http://dbpedia.org/resource/Exposition_Universelle_%281900%29 + , http://dbpedia.org/resource/File:Power-energy_for_energy_storage_systems.png + , http://dbpedia.org/resource/2-vinylpyridine + , http://dbpedia.org/resource/Fluoropolymer + , http://dbpedia.org/resource/File:Frenkel_defect_in_AgCl.png + , http://dbpedia.org/resource/World%E2%80%99s_fair + , http://dbpedia.org/resource/Cathode + , http://dbpedia.org/resource/Electrochromism + , http://dbpedia.org/resource/Otto_Schott + , http://dbpedia.org/resource/Faraday%27s_laws_of_electrolysis + , http://dbpedia.org/resource/Gibbs_energy + , http://dbpedia.org/resource/Electrolyte + , http://dbpedia.org/resource/Solid_State_Ionics_%28journal%29 + , http://dbpedia.org/resource/Gas_constant + , http://dbpedia.org/resource/Yttria-stabilized_zirconia + , http://dbpedia.org/resource/Lithium-ion_battery + , http://dbpedia.org/resource/Solid-state_battery + , http://dbpedia.org/resource/Silver_iodide + , http://dbpedia.org/resource/Voltaic_pile + , http://dbpedia.org/resource/Wilhelm_Ostwald + , http://dbpedia.org/resource/Glass_transition + , http://dbpedia.org/resource/Walther_Nernst + , http://dbpedia.org/resource/Ion_transport_number + , http://dbpedia.org/resource/Anion + , http://dbpedia.org/resource/Cation + , http://dbpedia.org/resource/Supercapacitor + , http://dbpedia.org/resource/NASICON + , http://dbpedia.org/resource/Nafion + , http://dbpedia.org/resource/Thermodynamics + , http://dbpedia.org/resource/Belgirate + , http://dbpedia.org/resource/Walter_Schottky + , http://dbpedia.org/resource/Stoichiometry + , http://dbpedia.org/resource/German_gold_mark + , http://dbpedia.org/resource/Johann_Wilhelm_Hittorf + , http://dbpedia.org/resource/Ferrara + , http://dbpedia.org/resource/Yakov_Frenkel + , http://dbpedia.org/resource/Carl_Wagner + , http://dbpedia.org/resource/Rubidium_silver_iodide +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:E + , http://dbpedia.org/resource/Template:Reflist + , http://dbpedia.org/resource/Template:For +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Electrochemistry +
http://purl.org/linguistics/gold/hypernym http://dbpedia.org/resource/Study +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Solid_state_ionics?oldid=1092456316&ns=0 +
http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/Ionic_conductivity_of_silver_halides.png + , http://commons.wikimedia.org/wiki/Special:FilePath/Power-energy_for_energy_storage_systems.png + , http://commons.wikimedia.org/wiki/Special:FilePath/Frenkel_defect_in_AgCl.png + , http://commons.wikimedia.org/wiki/Special:FilePath/M_Faraday_Th_Phillips_oil_1842.jpg +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Solid_state_ionics +
owl:sameAs http://dbpedia.org/resource/Solid_state_ionics + , https://global.dbpedia.org/id/3WfeD + , http://www.wikidata.org/entity/Q3801421 + , http://rdf.freebase.com/ns/m.05c016r + , http://ja.dbpedia.org/resource/%E5%9B%BA%E4%BD%93%E3%82%A4%E3%82%AA%E3%83%8B%E3%82%AF%E3%82%B9 + , http://zh.dbpedia.org/resource/%E5%9B%BA%E6%80%81%E7%A6%BB%E5%AD%90%E5%AD%A6 + , http://it.dbpedia.org/resource/Ionica_dello_stato_solido +
rdf:type http://dbpedia.org/ontology/Book +
rdfs:comment La ionica dello stato solido è la branca dLa ionica dello stato solido è la branca dell'elettrochimica che si concentra sullo studio e l'impiego degli elettroliti solidi (tra cui solidi inorganici cristallini e policristallini, materiali ceramici, vetri, materiali polimerici e materiali compositi).teriali polimerici e materiali compositi). , 固态离子学是一门研究及其应用的学科。属于这个范畴的材料包括无机晶体和多晶固体、陶瓷、固态离子学是一门研究及其应用的学科。属于这个范畴的材料包括无机晶体和多晶固体、陶瓷、玻璃、聚合物和复合物。类似固体氧化物燃料电池的固态离子器件,相比基于液态电解质的器件,具有更高的可靠性和工作寿命,特别是在苛刻的工作条件下。 固态离子学起源于欧洲,肇始于1834年麥可·法拉第对于固态电解质 Ag2S 和 PbF2 的研究。随后的基础性贡献来自于瓦爾特·能斯特,他推导出了能斯特方程,并在异价掺杂的二氧化锆中观察到了离子传导现象。他利用这个现象发明了。另一个重要的进步来自于1914年对于碘化银的表征和研究。1930年左右,雅科夫·弗伦克尔、華特·蕭特基、等人建立起了点缺陷的概念,肖特基和瓦格纳同时也发展了点缺陷的热力学理论。这些理论有助于理解在离子晶体、离子导电玻璃、聚合物电解质和纳米复合物中的离子和电子输运现象。在20世纪末21世纪初,固态离子学领域的工作主要集中于合成和表征各类新型的固态电解质材料,并将它们用于固态电池、燃料电池和传感器。要集中于合成和表征各类新型的固态电解质材料,并将它们用于固态电池、燃料电池和传感器。 , 固体イオニクスとは、固体電解質とその用途に関する研究である。一部の原料は水晶や多結晶からなる固体、セラミック、ガラス、ポリマーなどである。固体酸化物形燃料電池のような固体イオニクスを用いた装置は、厳しい条件化において液体電解質を用いた装置より信頼性が高く長持ちする。 最新の調査ではアジアでは一次研究や応用的な研究に利用され、欧米では主に自動車産業が主導する研究に応用されている。一部の研究はアメリカ国防総省の支援を受けている。 , Solid-state ionics is the study of ionic-eSolid-state ionics is the study of ionic-electronic mixed conductor and fully ionic conductors (solid electrolytes) and their uses. Some materials that fall into this category include inorganic crystalline and polycrystalline solids, ceramics, glasses, polymers, and composites. Solid-state ionic devices, such as solid oxide fuel cells, can be much more reliable and long-lasting, especially under harsh conditions, than comparable devices with fluid electrolytes.omparable devices with fluid electrolytes.
rdfs:label 固体イオニクス , Solid state ionics , 固态离子学 , Ionica dello stato solido
hide properties that link here 
http://dbpedia.org/resource/Solid_State_Ionics + http://dbpedia.org/ontology/academicDiscipline
http://dbpedia.org/resource/Carl_Wagner + , http://dbpedia.org/resource/Walter_H._Schottky + http://dbpedia.org/ontology/knownFor
http://dbpedia.org/resource/SSI + , http://dbpedia.org/resource/Solid_state + http://dbpedia.org/ontology/wikiPageDisambiguates
http://dbpedia.org/resource/Solid-state_ionics + http://dbpedia.org/ontology/wikiPageRedirects
http://dbpedia.org/resource/Solid-state_ionics + , http://dbpedia.org/resource/Nanoionics + , http://dbpedia.org/resource/SSI + , http://dbpedia.org/resource/Solid_state + , http://dbpedia.org/resource/Fast_ion_conductor + , http://dbpedia.org/resource/Carl_Wagner + , http://dbpedia.org/resource/Walter_H._Schottky + , http://dbpedia.org/resource/Yakov_Frenkel + , http://dbpedia.org/resource/Robert_Huggins + , http://dbpedia.org/resource/Walther_Nernst + , http://dbpedia.org/resource/Solid_State_Ionics + http://dbpedia.org/ontology/wikiPageWikiLink
http://dbpedia.org/resource/Carl_Wagner + , http://dbpedia.org/resource/Walter_H._Schottky + http://dbpedia.org/property/knownFor
http://en.wikipedia.org/wiki/Solid_state_ionics + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Solid_state_ionics + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.