Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Radioactivity in the life sciences
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Radioactivity_in_the_life_sciences
http://dbpedia.org/ontology/abstract Radioactivity is generally used in life scRadioactivity is generally used in life sciences for highly sensitive and direct measurements of biological phenomena, and for visualizing the location of biomolecules radiolabelled with a radioisotope. All atoms exist as stable or unstable isotopes and the latter decay at a given half-life ranging from attoseconds to billions of years; radioisotopes useful to biological and experimental systems have half-lives ranging from minutes to months. In the case of the hydrogen isotope tritium (half-life = 12.3 years) and carbon-14 (half-life = 5,730 years), these isotopes derive their importance from all organic life containing hydrogen and carbon and therefore can be used to study countless living processes, reactions, and phenomena. Most short lived isotopes are produced in cyclotrons, linear particle accelerators, or nuclear reactors and their relatively short half-lives give them high maximum theoretical specific activities which is useful for detection in biological systems. Radiolabeling is a technique used to track the passage of a molecule that incorporates a radioisotope through a reaction, metabolic pathway, cell, tissue, organism, or biological system. The reactant is 'labeled' by replacing specific atoms by their isotope. Replacing an atom with its own radioisotope is an intrinsic label that does not alter the structure of the molecule. Alternatively, molecules can be radiolabeled by chemical reactions that introduce an atom, moiety, or functional group that contains a radionuclide. For example, radio-iodination of peptides and proteins with biologically useful iodine isotopes is easily done by an oxidation reaction that replaces the hydroxyl group with iodine on tyrosine and histadine residues. Another example is to use chelators such DOTA that can be chemically coupled to a protein; the chelator in turn traps radiometals thus radiolabeling the protein. This has been used for introducing Yttrium-90 onto a monoclonal antibody for therapeutic purposes and for introducing Gallium-68 onto the peptide Octreotide for diagnostic imaging by PET imaging. (See DOTA uses.) Radiolabeling is not necessary for some applications. For some purposes, soluble ionic salts can be used directly without further modification (e.g., gallium-67, gallium-68, and radioiodine isotopes). These uses rely on the chemical and biological properties of the radioisotope itself, to localize it within the organism or biological system. Molecular imaging is the biomedical field that employs radiotracers to visualize and quantify biological processes using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging. Again, a key feature of using radioactivity in life science applications is that it is a quantitative technique, so PET/SPECT not only reveals where a radiolabelled molecule is but how much is there. Radiobiology (also known as radiation biology) is a field of clinical and basic medical sciences that involves the study of the action of radioactivity on biological systems. The controlled action of deleterious radioactivity on living systems is the basis of radiation therapy.systems is the basis of radiation therapy. , يمكن استخدام النشاط الإشعاعي في علوم الحيايمكن استخدام النشاط الإشعاعي في علوم الحياة على أنه تصنيف إشعاعي لتصوير المكونات أو الجزئيات المستهدفة في أي نظام بيولوجي. يتم توليف بعض النوكليدات المشعة في مسرعات الجسيمات ولديها أعمار نصفية قصيرة، مما يعطيها الحد الأقصى للأنشطة النظرية. يؤدي هذا إلى خفض وقت الكشف مقارنة بالنوكليدات المشعة ذات الأعمار النصفية الأطول، مثل الكربون-14. ويتم استبدالها في بعض التطبيقات بـ الصبغات الفلورية.الها في بعض التطبيقات بـ الصبغات الفلورية. , Radioatividade é geralmente usado em ciêncRadioatividade é geralmente usado em ciências da vida para medições diretas e altamente sensíveis de fenômenos biológicos e para visualizar a localização de biomoléculas marcadas isotopicamente com um radioisótopo. Todos os átomos existem como isótopos estáveis ou instáveis e apresentando decaimento radioativo em uma dada faixa de meia-vida variando de attossegundos a bilhões de anos; radioisótopos úteis para sistemas biológicos e experimentais têm meia-vida variando de minutos a meses. No caso do isótopo de hidrogênio trítio (meia-vida = 12,3 anos) e carbono-14 (meia-vida = 5.730 anos), esses isótopos derivam sua importância de toda a vida orgânica contendo hidrogênio e carbono e, portanto, podem ser usados para estudar inúmeros processos vivos, reações e fenômenos. A maioria dos isótopos de vida curta são produzidos em cíclotrons, aceleradores de partículas lineares, ou reatores nucleares, e suas meias-vidas relativamente curtas proporcionam então altos máximos teóricos específicos, úteis para a detecção em sistemas biológicos. Marcação isotópica é uma técnica usada para rastrear a passagem de uma molécula que incorpora um radioisótopo por meio de uma reação, via metabólica, célula, tecido, organismo ou sistema biológico. O reagente é 'marcado' substituindo átomos específicos pelo seu isótopo. Substituir um átomo por seu próprio radioisótopo é um marcador que não altera a estrutura da molécula. Alternativamente, as moléculas podem ser radiomarcadas por reações químicas que introduzem um átomo, , ou grupo funcional que contém um radioisótopo. Por exemplo, radio-iodinação de peptídeos e proteínas com é realizada facilmente por uma reação de oxidação que substitui o grupo hidroxila pelo iodo nos resíduos de tirosina e . Outro exemplo é usar quelantes como que podem ser quimicamente acoplados a uma proteína; o quelante, por sua vez, captura os radiometais, radiomarcando a proteína. Isto tem sido usado para introduzir ítrio-90 em um anticorpo monoclonal para fins terapêuticos e para a introdução de gálio-68 no peptídeo para diagnóstico por imagem por captura de imagem PET. Marcação isotópica não é necessário para algumas aplicações. Para alguns propósitos, sais iônicos solúveis podem ser usados diretamente, sem modificações adicionais (e.g., , , e isótopos ). Esses usos dependem das propriedades químicas e biológicas do próprio radioisótopo para localizá-lo no organismo ou sistema biológico. é o campo biomédico que emprega radiomarcadores para visualizar e quantificar processos biológicos usando tomografia por emissão de positrões (conhecida pela sigla inglesa PET) e produção de imagens por (SPECT). Novamente, uma característica fundamental do uso da radioatividade em aplicações de ciências da vida é que é uma técnica quantitativa, de modo que as técnicas PET e SPECT não apenas revelam onde está uma molécula radiomarcada, mas quanto dela existe. Radiobiologia (também conhecida como biologia da radiação) é um campo das ciências médicas básicas e clínicas que envolve o estudo da ação da radioatividade em sistemas biológicos. A ação deletéria controlada da radioatividade nos sistemas vivos é a base da terapia por radiação.as vivos é a base da terapia por radiação.
http://dbpedia.org/ontology/thumbnail http://commons.wikimedia.org/wiki/Special:FilePath/Y-90_tacatuzumab_tetraxetan_structure.svg?width=300 +
http://dbpedia.org/ontology/wikiPageExternalLink https://web.archive.org/web/20090105194225/http:/www.biospacelab.com/html/microimager.html +
http://dbpedia.org/ontology/wikiPageID 8355163
http://dbpedia.org/ontology/wikiPageLength 18222
http://dbpedia.org/ontology/wikiPageRevisionID 1121535312
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Beta_decay + , http://dbpedia.org/resource/Adenosine_triphosphate + , http://dbpedia.org/resource/Tritium + , http://dbpedia.org/resource/Counts_per_minute + , http://dbpedia.org/resource/Category:Radioactivity + , http://dbpedia.org/resource/Liquid_scintillation_counting + , http://dbpedia.org/resource/Intrinsic_and_extrinsic_properties + , http://dbpedia.org/resource/Phosphor_storage_screen + , http://dbpedia.org/resource/Histadine + , http://dbpedia.org/resource/Carbon-14 + , http://dbpedia.org/resource/Isotope + , http://dbpedia.org/resource/Radiolabelled + , http://dbpedia.org/resource/Nucleotide + , http://dbpedia.org/resource/Ion_transporter + , http://dbpedia.org/resource/Radionuclide + , http://dbpedia.org/resource/Prehydrated_electrons + , http://dbpedia.org/resource/File:Y-90_tacatuzumab_tetraxetan_structure.svg + , http://dbpedia.org/resource/Plexiglass + , http://dbpedia.org/resource/File:Southern-Blot-Autoradiogramm.jpg + , http://dbpedia.org/resource/Isotopes + , http://dbpedia.org/resource/Amino_acid + , http://dbpedia.org/resource/Isotopic_labeling + , http://dbpedia.org/resource/Radiation_therapy + , http://dbpedia.org/resource/Quenching_%28fluorescence%29 + , http://dbpedia.org/resource/Background_radiation + , http://dbpedia.org/resource/Gallium-67 + , http://dbpedia.org/resource/Protein + , http://dbpedia.org/resource/Radioisotope + , http://dbpedia.org/resource/DOTA_%28chelator%29 + , http://dbpedia.org/resource/Radioiodine + , http://dbpedia.org/resource/Biomolecule + , http://dbpedia.org/resource/Particle_accelerator + , http://dbpedia.org/resource/Geiger_counter + , http://dbpedia.org/resource/Nuclear_reactor + , http://dbpedia.org/resource/Acrylic_glass + , http://dbpedia.org/resource/File:PET-MIPS-anim.gif + , http://dbpedia.org/resource/Tyrosine + , http://dbpedia.org/resource/Radiobiology + , http://dbpedia.org/resource/Phosphorus-33 + , http://dbpedia.org/resource/Health_physics + , http://dbpedia.org/resource/Single-photon_emission_computed_tomography + , http://dbpedia.org/resource/Category:Biology + , http://dbpedia.org/resource/ADME + , http://dbpedia.org/resource/Uridine_triphosphate + , http://dbpedia.org/resource/Octreotide + , http://dbpedia.org/resource/Isotopes_of_iodine + , http://dbpedia.org/resource/File:Autoradiography_of_a_brain_slice_from_an_embryonal_rat_-_PMID19190758_PLoS_0004371.png + , http://dbpedia.org/resource/Administrative_controls + , http://dbpedia.org/resource/Molecular_imaging + , http://dbpedia.org/resource/Radiometric_dating + , http://dbpedia.org/resource/Gallium-68 + , http://dbpedia.org/resource/Dissociation_constant + , http://dbpedia.org/resource/Fluorescence_in_the_life_sciences + , http://dbpedia.org/resource/Thiol_group + , http://dbpedia.org/resource/Scintillation_counter + , http://dbpedia.org/resource/Slot_blot + , http://dbpedia.org/resource/Radiography + , http://dbpedia.org/resource/Cyclotron + , http://dbpedia.org/resource/Radiation_biology + , http://dbpedia.org/resource/Photostimulated_luminescence + , http://dbpedia.org/resource/Gamma_counter + , http://dbpedia.org/resource/Functional_group + , http://dbpedia.org/resource/Rad_%28unit%29 + , http://dbpedia.org/resource/Electron_microscopy + , http://dbpedia.org/resource/R%C3%B6ntgen_equivalent_man + , http://dbpedia.org/resource/Nucleic_acid + , http://dbpedia.org/resource/Photomultiplier + , http://dbpedia.org/resource/Moiety_%28chemistry%29 + , http://dbpedia.org/resource/Polymerase + , http://dbpedia.org/resource/Category:Radiation_health_effects + , http://dbpedia.org/resource/Sulfur-35 + , http://dbpedia.org/resource/Neutron + , http://dbpedia.org/resource/Iodine-125 + , http://dbpedia.org/resource/Chlorine-36 + , http://dbpedia.org/resource/Shelf_life + , http://dbpedia.org/resource/Northern_blot + , http://dbpedia.org/resource/Engineering_controls + , http://dbpedia.org/resource/Thiophosphate + , http://dbpedia.org/resource/Phosphorimager + , http://dbpedia.org/resource/Region_of_interest + , http://dbpedia.org/resource/Mammogram + , http://dbpedia.org/resource/Radiation_poisoning + , http://dbpedia.org/resource/Autoradiography + , http://dbpedia.org/resource/Radiopharmacology + , http://dbpedia.org/resource/Millisievert + , http://dbpedia.org/resource/Gray_%28unit%29 + , http://dbpedia.org/resource/Schild_regression + , http://dbpedia.org/resource/Scintillator + , http://dbpedia.org/resource/Half-life + , http://dbpedia.org/resource/Positron_emission_tomography + , http://dbpedia.org/resource/Sodium-22 + , http://dbpedia.org/resource/Cysteine + , http://dbpedia.org/resource/Phosphorus-32 +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:See_also + , http://dbpedia.org/resource/Template:Convert + , http://dbpedia.org/resource/Template:Main + , http://dbpedia.org/resource/Template:About + , http://dbpedia.org/resource/Template:Short_description + , http://dbpedia.org/resource/Template:Expand_section + , http://dbpedia.org/resource/Template:Radiation + , http://dbpedia.org/resource/Template:Citation_needed + , http://dbpedia.org/resource/Template:Val + , http://dbpedia.org/resource/Template:Reflist +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Radiation_health_effects + , http://dbpedia.org/resource/Category:Biology + , http://dbpedia.org/resource/Category:Radioactivity +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Radioactivity_in_the_life_sciences?oldid=1121535312&ns=0 +
http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/Autoradiography_of_a_brain_slice_from_an_embryonal_rat_-_PMID19190758_PLoS_0004371.png + , http://commons.wikimedia.org/wiki/Special:FilePath/PET-MIPS-anim.gif + , http://commons.wikimedia.org/wiki/Special:FilePath/Y-90_tacatuzumab_tetraxetan_structure.svg + , http://commons.wikimedia.org/wiki/Special:FilePath/Southern-Blot-Autoradiogramm.jpg +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Radioactivity_in_the_life_sciences +
owl:sameAs https://global.dbpedia.org/id/4u92N + , http://pt.dbpedia.org/resource/Radioatividade_nas_ci%C3%AAncias_da_vida + , http://www.wikidata.org/entity/Q7281231 + , http://dbpedia.org/resource/Radioactivity_in_the_life_sciences + , http://yago-knowledge.org/resource/Radioactivity_in_the_life_sciences + , http://rdf.freebase.com/ns/m.0270jql + , http://ar.dbpedia.org/resource/%D9%86%D8%B4%D8%A7%D8%B7_%D8%A5%D8%B4%D8%B9%D8%A7%D8%B9%D9%8A_%D9%81%D9%8A_%D8%B9%D9%84%D9%88%D9%85_%D8%A7%D9%84%D8%AD%D9%8A%D8%A7%D8%A9 +
rdf:type http://dbpedia.org/class/yago/Consequence111410625 + , http://dbpedia.org/class/yago/Process100029677 + , http://dbpedia.org/class/yago/Phenomenon100034213 + , http://dbpedia.org/class/yago/WikicatRadiationHealthEffects + , http://dbpedia.org/class/yago/PhysicalEntity100001930 +
rdfs:comment يمكن استخدام النشاط الإشعاعي في علوم الحيايمكن استخدام النشاط الإشعاعي في علوم الحياة على أنه تصنيف إشعاعي لتصوير المكونات أو الجزئيات المستهدفة في أي نظام بيولوجي. يتم توليف بعض النوكليدات المشعة في مسرعات الجسيمات ولديها أعمار نصفية قصيرة، مما يعطيها الحد الأقصى للأنشطة النظرية. يؤدي هذا إلى خفض وقت الكشف مقارنة بالنوكليدات المشعة ذات الأعمار النصفية الأطول، مثل الكربون-14. ويتم استبدالها في بعض التطبيقات بـ الصبغات الفلورية.الها في بعض التطبيقات بـ الصبغات الفلورية. , Radioatividade é geralmente usado em ciêncRadioatividade é geralmente usado em ciências da vida para medições diretas e altamente sensíveis de fenômenos biológicos e para visualizar a localização de biomoléculas marcadas isotopicamente com um radioisótopo. Marcação isotópica não é necessário para algumas aplicações. Para alguns propósitos, sais iônicos solúveis podem ser usados diretamente, sem modificações adicionais (e.g., , , e isótopos ). Esses usos dependem das propriedades químicas e biológicas do próprio radioisótopo para localizá-lo no organismo ou sistema biológico.lizá-lo no organismo ou sistema biológico. , Radioactivity is generally used in life scRadioactivity is generally used in life sciences for highly sensitive and direct measurements of biological phenomena, and for visualizing the location of biomolecules radiolabelled with a radioisotope. Radiolabeling is not necessary for some applications. For some purposes, soluble ionic salts can be used directly without further modification (e.g., gallium-67, gallium-68, and radioiodine isotopes). These uses rely on the chemical and biological properties of the radioisotope itself, to localize it within the organism or biological system. within the organism or biological system.
rdfs:label Radioactivity in the life sciences , Radioatividade nas ciências da vida , نشاط إشعاعي في علوم الحياة
rdfs:seeAlso http://dbpedia.org/resource/Fluorescence + , http://dbpedia.org/resource/The_life_sciences +
hide properties that link here 
http://dbpedia.org/resource/Radioactivity_in_biology + http://dbpedia.org/ontology/wikiPageRedirects
http://dbpedia.org/resource/Radioactivity_in_biology + , http://dbpedia.org/resource/GFAJ-1 + , http://dbpedia.org/resource/Nucleic_acid_methods + , http://dbpedia.org/resource/George_Brownlee + , http://dbpedia.org/resource/Radioactivity_in_biological_research + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Radioactivity_in_the_life_sciences + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Radioactivity_in_the_life_sciences + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.