Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Microplane model for constitutive laws of materials
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Microplane_model_for_constitutive_laws_of_materials
http://dbpedia.org/ontology/abstract The microplane model, conceived in 1984, iThe microplane model, conceived in 1984, is a material constitutive model for progressive softening damage. Its advantage over the classical tensorial constitutive models is that it can capture the oriented nature of damage such as tensile cracking, slip, friction, and compression splitting, as well as the orientation of fiber reinforcement. Another advantage is that the anisotropy of materials such as gas shale or fiber composites can be effectively represented. To prevent unstable strain localization (and spurious mesh sensitivity in finite element computations), this model must be used in combination with some nonlocal continuum formulation (e.g., the crack band model). Prior to 2000, these advantages were outweighed by greater computational demands of the material subroutine, but thanks to huge increase of computer power, the microplane model is now routinely used in computer programs, even with tens of millions of finite elements. with tens of millions of finite elements.
http://dbpedia.org/ontology/wikiPageID 48851801
http://dbpedia.org/ontology/wikiPageLength 11227
http://dbpedia.org/ontology/wikiPageRevisionID 1117286901
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Integral + , http://dbpedia.org/resource/Concrete_fracture_analysis + , http://dbpedia.org/resource/Friction + , http://dbpedia.org/resource/Finite_elements + , http://dbpedia.org/resource/Stress_%28mechanics%29 + , http://dbpedia.org/resource/Anisotropy + , http://dbpedia.org/resource/Constitutive_model + , http://dbpedia.org/resource/Cauchy_stress_tensor + , http://dbpedia.org/resource/Normal_vector + , http://dbpedia.org/resource/Category:Equations_of_physics + , http://dbpedia.org/resource/Uniaxial + , http://dbpedia.org/resource/Deformation_%28mechanics%29 + , http://dbpedia.org/resource/G._I._Taylor + , http://dbpedia.org/resource/Orthogonal_vectors + , http://dbpedia.org/resource/Ellipsoid + , http://dbpedia.org/resource/Metal + , http://dbpedia.org/resource/Fracture + , http://dbpedia.org/resource/Strain_tensor + , http://dbpedia.org/resource/Category:Materials_science + , http://dbpedia.org/resource/Rock_%28geology%29 + , http://dbpedia.org/resource/Materials_science + , http://dbpedia.org/resource/Variational_principle + , http://dbpedia.org/resource/Sand + , http://dbpedia.org/resource/Vector_%28mathematics_and_physics%29 + , http://dbpedia.org/resource/Shale_gas + , http://dbpedia.org/resource/Virtual_work + , http://dbpedia.org/resource/Biaxial + , http://dbpedia.org/resource/Tensor + , http://dbpedia.org/resource/Clay + , http://dbpedia.org/resource/Fiber_composite +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Reflist + , http://dbpedia.org/resource/Template:Orphan +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Equations_of_physics + , http://dbpedia.org/resource/Category:Materials_science +
http://purl.org/linguistics/gold/hypernym http://dbpedia.org/resource/Model +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Microplane_model_for_constitutive_laws_of_materials?oldid=1117286901&ns=0 +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Microplane_model_for_constitutive_laws_of_materials +
owl:sameAs http://yago-knowledge.org/resource/Microplane_model_for_constitutive_laws_of_materials + , http://dbpedia.org/resource/Microplane_model_for_constitutive_laws_of_materials + , http://www.wikidata.org/entity/Q25111892 + , https://global.dbpedia.org/id/2N7F7 +
rdf:type http://dbpedia.org/ontology/Person +
rdfs:comment The microplane model, conceived in 1984, iThe microplane model, conceived in 1984, is a material constitutive model for progressive softening damage. Its advantage over the classical tensorial constitutive models is that it can capture the oriented nature of damage such as tensile cracking, slip, friction, and compression splitting, as well as the orientation of fiber reinforcement. Another advantage is that the anisotropy of materials such as gas shale or fiber composites can be effectively represented. To prevent unstable strain localization (and spurious mesh sensitivity in finite element computations), this model must be used in combination with some nonlocal continuum formulation (e.g., the crack band model). Prior to 2000, these advantages were outweighed by greater computational demands of the material subroutine, but thankands of the material subroutine, but thank
rdfs:label Microplane model for constitutive laws of materials
hide properties that link here 
http://dbpedia.org/resource/Structural_material + , http://dbpedia.org/resource/Microplane_Model_for_Constitutive_Laws_of_Materials + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Microplane_model_for_constitutive_laws_of_materials + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Microplane_model_for_constitutive_laws_of_materials + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.