Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Localization formula for equivariant cohomology
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Localization_formula_for_equivariant_cohomology
http://dbpedia.org/ontology/abstract In differential geometry, the localizationIn differential geometry, the localization formula states: for an equivariantly closed equivariant differential form on an orbifold M with a torus action and for a sufficient small in the Lie algebra of the torus T, where the sum runs over all connected components F of the set of fixed points , is the orbifold multiplicity of M (which is one if M is a manifold) and is the equivariant Euler form of the normal bundle of F. The formula allows one to compute the equivariant cohomology ring of the orbifold M (a particular kind of differentiable stack) from the equivariant cohomology of its fixed point components, up to multiplicities and Euler forms. No analog of such results holds in the non-equivariant cohomology. One important consequence of the formula is the Duistermaat–Heckman theorem, which states: supposing there is a Hamiltonian circle action (for simplicity) on a compact symplectic manifold M of dimension 2n, where H is Hamiltonian for the circle action, the sum is over points fixed by the circle action and are eigenvalues on the tangent space at p (cf. Lie group action.) The localization formula can also computes the Fourier transform of (Kostant's symplectic form on) coadjoint orbit, yielding the , which in turns gives Kirillov's character formula. The localization theorem for equivariant cohomology in non-rational coefficients is discussed in Daniel Quillen's papers.s is discussed in Daniel Quillen's papers.
http://dbpedia.org/ontology/wikiPageID 44300155
http://dbpedia.org/ontology/wikiPageLength 3828
http://dbpedia.org/ontology/wikiPageRevisionID 1083534712
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Advances_in_Mathematics + , http://dbpedia.org/resource/Kirillov%27s_character_formula + , http://dbpedia.org/resource/Torus_action + , http://dbpedia.org/resource/Lie_group_action + , http://dbpedia.org/resource/Orbifold_multiplicity + , http://dbpedia.org/resource/Category:Differential_geometry + , http://dbpedia.org/resource/Fourier_transform + , http://dbpedia.org/resource/Harish-Chandra%27s_integration_formula + , http://dbpedia.org/resource/Duistermaat%E2%80%93Heckman_theorem + , http://dbpedia.org/resource/Daniel_Quillen + , http://dbpedia.org/resource/Orbifold + , http://dbpedia.org/resource/Equivariant_cohomology_ring + , http://dbpedia.org/resource/Equivariant_differential_form + , http://dbpedia.org/resource/Euler_class + , http://dbpedia.org/resource/Differentiable_stack + , http://dbpedia.org/resource/Topology_%28journal%29 +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Citation + , http://dbpedia.org/resource/Template:Differential-geometry-stub + , http://dbpedia.org/resource/Template:Expand_section +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Differential_geometry +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Localization_formula_for_equivariant_cohomology?oldid=1083534712&ns=0 +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Localization_formula_for_equivariant_cohomology +
owl:sameAs http://rdf.freebase.com/ns/m.0127xcsm + , http://dbpedia.org/resource/Localization_formula_for_equivariant_cohomology + , https://global.dbpedia.org/id/sNCj + , http://www.wikidata.org/entity/Q19597765 +
rdfs:comment In differential geometry, the localizationIn differential geometry, the localization formula states: for an equivariantly closed equivariant differential form on an orbifold M with a torus action and for a sufficient small in the Lie algebra of the torus T, where the sum runs over all connected components F of the set of fixed points , is the orbifold multiplicity of M (which is one if M is a manifold) and is the equivariant Euler form of the normal bundle of F. where H is Hamiltonian for the circle action, the sum is over points fixed by the circle action and are eigenvalues on the tangent space at p (cf. Lie group action.)tangent space at p (cf. Lie group action.)
rdfs:label Localization formula for equivariant cohomology
hide properties that link here 
http://dbpedia.org/resource/Duistermaat%E2%80%93Heckman_formula + , http://dbpedia.org/resource/Michael_Atiyah + , http://dbpedia.org/resource/Equivariant_cohomology + , http://dbpedia.org/resource/Equivariant_differential_form + , http://dbpedia.org/resource/Abelian_localization + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Localization_formula_for_equivariant_cohomology + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Localization_formula_for_equivariant_cohomology + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.