Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Kan-Thurston theorem
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Kan-Thurston_theorem
http://dbpedia.org/ontology/abstract In mathematics, particularly algebraic topIn mathematics, particularly algebraic topology, the Kan-Thurston theorem associates a discrete group to every path-connected topological space in such a way that the group cohomology of is the same as the cohomology of the space . The group might then be regarded as a good approximation to the space , and consequently the theorem is sometimes interpreted to mean that homotopy theory can be viewed as part of group theory. More precisely, the theorem states that every path-connected topological space is homology-equivalent to the classifying space of a discrete group , where homology-equivalent means there is a map inducing an isomorphism on homology. The theorem is attributed to Daniel Kan and William Thurston who published their result in 1976.urston who published their result in 1976.
http://dbpedia.org/ontology/wikiPageID 64175714
http://dbpedia.org/ontology/wikiPageLength 3917
http://dbpedia.org/ontology/wikiPageRevisionID 1043011873
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Isomorphism + , http://dbpedia.org/resource/Connected_space + , http://dbpedia.org/resource/Mathematics + , http://dbpedia.org/resource/Group_cohomology + , http://dbpedia.org/resource/Group_theory + , http://dbpedia.org/resource/Fibration + , http://dbpedia.org/resource/Algebraic_topology + , http://dbpedia.org/resource/Category:Homotopy_theory + , http://dbpedia.org/resource/Daniel_Kan + , http://dbpedia.org/resource/Cohomology + , http://dbpedia.org/resource/Aspherical_space + , http://dbpedia.org/resource/Homology_%28mathematics%29 + , http://dbpedia.org/resource/Category:Homology_theory + , http://dbpedia.org/resource/Topological_space + , http://dbpedia.org/resource/Singular_homology + , http://dbpedia.org/resource/Map_%28mathematics%29 + , http://dbpedia.org/resource/Induced_homomorphism + , http://dbpedia.org/resource/Classifying_space + , http://dbpedia.org/resource/Discrete_group + , http://dbpedia.org/resource/William_Thurston + , http://dbpedia.org/resource/Natural_transformation + , http://dbpedia.org/resource/Surjective_function + , http://dbpedia.org/resource/Homotopy_theory +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Reflist + , http://dbpedia.org/resource/Template:Cite_journal +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Homology_theory + , http://dbpedia.org/resource/Category:Homotopy_theory +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Kan-Thurston_theorem?oldid=1043011873&ns=0 +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Kan-Thurston_theorem +
owl:sameAs http://www.wikidata.org/entity/Q96385278 + , https://global.dbpedia.org/id/CB5FV + , http://dbpedia.org/resource/Kan-Thurston_theorem +
rdfs:comment In mathematics, particularly algebraic topIn mathematics, particularly algebraic topology, the Kan-Thurston theorem associates a discrete group to every path-connected topological space in such a way that the group cohomology of is the same as the cohomology of the space . The group might then be regarded as a good approximation to the space , and consequently the theorem is sometimes interpreted to mean that homotopy theory can be viewed as part of group theory. The theorem is attributed to Daniel Kan and William Thurston who published their result in 1976.urston who published their result in 1976.
rdfs:label Kan-Thurston theorem
hide properties that link here 
http://dbpedia.org/resource/Daniel_Kan + http://dbpedia.org/ontology/knownFor
http://dbpedia.org/resource/Daniel_Kan + http://dbpedia.org/ontology/wikiPageWikiLink
http://dbpedia.org/resource/Daniel_Kan + http://dbpedia.org/property/knownFor
http://en.wikipedia.org/wiki/Kan-Thurston_theorem + http://xmlns.com/foaf/0.1/primaryTopic
 

 

Enter the name of the page to start semantic browsing from.