Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Hierarchical equations of motion
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Hierarchical_equations_of_motion
http://dbpedia.org/ontology/abstract The hierarchical equations of motion (HEOMThe hierarchical equations of motion (HEOM) technique derived by Yoshitaka Tanimura and Ryogo Kubo in 1989, is a non-perturbative approach developed to study the evolution of a density matrix of quantum dissipative systems. The method can treat system-bath interaction non-perturbatively as well as non-Markovian noise correlation times without the hindrance of the typical assumptions that conventional Redfield (master) equations suffer from such as the Born, Markovian and rotating-wave approximations. HEOM is applicable even at low temperatures where quantum effects are not negligible. The hierarchical equation of motion for a system in a harmonic Markovian bath isr a system in a harmonic Markovian bath is
http://dbpedia.org/ontology/wikiPageID 51407573
http://dbpedia.org/ontology/wikiPageLength 13677
http://dbpedia.org/ontology/wikiPageRevisionID 1100760527
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Open_quantum_system + , http://dbpedia.org/resource/Quantum_dissipation + , http://dbpedia.org/resource/RAM + , http://dbpedia.org/resource/Bytes + , http://dbpedia.org/resource/Category:Quantum_mechanics + , http://dbpedia.org/resource/Fokker%E2%80%93Planck_equation + , http://dbpedia.org/resource/Ryogo_Kubo + , http://dbpedia.org/resource/Quantum_dynamical_semigroup + , http://dbpedia.org/resource/Quantum_master_equation + , http://dbpedia.org/resource/NanoHUB + , http://dbpedia.org/resource/Yoshitaka_Tanimura + , http://dbpedia.org/resource/Klaus_Schulten +
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Reflist +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Quantum_mechanics +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Hierarchical_equations_of_motion?oldid=1100760527&ns=0 +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Hierarchical_equations_of_motion +
owl:sameAs http://dbpedia.org/resource/Hierarchical_equations_of_motion + , http://www.wikidata.org/entity/Q28458353 + , https://global.dbpedia.org/id/2ePEX +
rdfs:comment The hierarchical equations of motion (HEOMThe hierarchical equations of motion (HEOM) technique derived by Yoshitaka Tanimura and Ryogo Kubo in 1989, is a non-perturbative approach developed to study the evolution of a density matrix of quantum dissipative systems. The method can treat system-bath interaction non-perturbatively as well as non-Markovian noise correlation times without the hindrance of the typical assumptions that conventional Redfield (master) equations suffer from such as the Born, Markovian and rotating-wave approximations. HEOM is applicable even at low temperatures where quantum effects are not negligible. where quantum effects are not negligible.
rdfs:label Hierarchical equations of motion
hide properties that link here 
http://dbpedia.org/resource/Ryogo_Kubo + , http://dbpedia.org/resource/Yoshitaka_Tanimura + http://dbpedia.org/ontology/knownFor
http://dbpedia.org/resource/Moral_psychology + , http://dbpedia.org/resource/Protein + , http://dbpedia.org/resource/Keio_University + , http://dbpedia.org/resource/Ryogo_Kubo + , http://dbpedia.org/resource/Yoshitaka_Tanimura + , http://dbpedia.org/resource/Open_quantum_system + , http://dbpedia.org/resource/Quantum_master_equation + , http://dbpedia.org/resource/Hierarchal_equations_of_motion + http://dbpedia.org/ontology/wikiPageWikiLink
http://dbpedia.org/resource/Ryogo_Kubo + , http://dbpedia.org/resource/Yoshitaka_Tanimura + http://dbpedia.org/property/knownFor
http://en.wikipedia.org/wiki/Hierarchical_equations_of_motion + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Hierarchical_equations_of_motion + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.