Browse Wiki & Semantic Web

Jump to: navigation, search
Http://dbpedia.org/resource/Energy cascade
  This page has no properties.
hide properties that link here 
  No properties link to this page.
 
http://dbpedia.org/resource/Energy_cascade
http://dbpedia.org/ontology/abstract In continuum mechanics, an energy cascade In continuum mechanics, an energy cascade involves the transfer of energy from large scales of motion to the small scales (called a direct energy cascade) or a transfer of energy from the small scales to the large scales (called an inverse energy cascade). This transfer of energy between different scales requires that the dynamics of the system is nonlinear. Strictly speaking, a cascade requires the energy transfer to be local in scale (only between fluctuations of nearly the same size), evoking a cascading waterfall from pool to pool without long-range transfers across the scale domain. Big whirls have little whirlsthat feed on their velocity, And little whirls have lesser whirls and so on to viscosity —Lewis F. Richardson, 1922 This concept plays an important role in the study of well-developed turbulence. It was memorably expressed in this poem by Lewis F. Richardson in the 1920s. Energy cascades are also important for wind waves in the theory of wave turbulence. Consider for instance turbulence generated by the air flow around a tall building: the energy-containing eddies generated by flow separation have sizes of the order of tens of meters. Somewhere downstream, dissipation by viscosity takes place, for the most part, in eddies at the Kolmogorov microscales: of the order of a millimetre for the present case. At these intermediate scales, there is neither a direct forcing of the flow nor a significant amount of viscous dissipation, but there is a net nonlinear transfer of energy from the large scales to the small scales. This intermediate range of scales, if present, is called the inertial subrange. The dynamics at these scales is described by use of self-similarity, or by assumptions – for turbulence closure – on the statistical properties of the flow in the inertial subrange. A pioneering work was the deduction by Andrey Kolmogorov in the 1940s of the expected wavenumber spectrum in the turbulence inertial subrange.ctrum in the turbulence inertial subrange. , Nella meccanica del continuo, una cascata Nella meccanica del continuo, una cascata di energia comporta il trasferimento di energia dal moto su grandi scale al moto su piccole scale (chiamata cascata diretta di energia) o un trasferimento di energia da piccole scale a grandi scale (chiamata cascata inversa di energia). Questo trasferimento di energia tra scale diverse richiede che la dinamica del sistema sia non lineare. Questo concetto gioca un ruolo importante nello studio della turbolenza completamente sviluppata e fu descritta per la prima volta da Lewis F. Richardson negli anni '20. Si consideri ad esempio la turbolenza generata dal flusso d'aria attorno a un edificio alto: i vortici (che contengono energia) generati dalla separazione del flusso hanno dimensioni dell'ordine di decine di metri. Da qualche parte a valle, la dissipazione ad opera della viscosità avviene, per la maggior parte, in vortici alle microscale di Kolmogorov: dell'ordine di un millimetro per il caso considerato. Sulle scale intermedie, non c'è né una immissione diretta di energia né un tasso significativo di dissipazione viscosa, ma c'è un trasferimento netto non lineare di energia dalle scale grandi a quelle piccole. Questo intervallo intermedio di scale, se presente, è chiamato (sotto)intervallo inerziale. La dinamica a queste scale è descritta sfruttando l'ipotesi dell'autosimilarità, o da altre ipotesi, per i modelli di chiusura della turbolenza, sulle proprietà statistiche del flusso nel sottointervallo inerziale. Un lavoro pionieristico fu la deduzione da parte di Andrey Kolmogorov negli anni Quaranta dello spettro di energia (nello spazio dei numeri d'onda) nel sottointervallo inerziale della turbolenza. Le cascate di energia sono importanti anche per le varie generalizzazioni del concetto di turbolenza, come la nelle onde marine o in ottica non lineare (in questo caso si porla di cascate di Kolmogorov-Zacharov). porla di cascate di Kolmogorov-Zacharov). , La cascade turbulente est une forme de traLa cascade turbulente est une forme de transfert d'énergie entre les tourbillons à grande énergie cinétique et les plus petits qui absorbent et dissipent celle-ci. Ce mécanisme est à l'origine du spectre d'énergie turbulente dans un écoulement. Ce mécanisme a été expliqué qualitativement par Lewis Fry Richardson en 1922. On parle alors de cascade de Richardson. Les lois correspondantes ont été obtenues par Andreï Kolmogorov en 1941. Pour ces lois on utilise le terme de cascade de Kolmogorov.utilise le terme de cascade de Kolmogorov.
http://dbpedia.org/ontology/thumbnail http://commons.wikimedia.org/wiki/Special:FilePath/False_color_image_of_the_far_field_of_a_submerged_turbulent_jet.jpg?width=300 +
http://dbpedia.org/ontology/wikiPageID 46767247
http://dbpedia.org/ontology/wikiPageLength 10398
http://dbpedia.org/ontology/wikiPageRevisionID 1104432502
http://dbpedia.org/ontology/wikiPageWikiLink http://dbpedia.org/resource/Laplace_operator + , http://dbpedia.org/resource/Thermal_energy + , http://dbpedia.org/resource/Shear_flow + , http://dbpedia.org/resource/Eddy_%28fluid_dynamics%29 + , http://dbpedia.org/resource/Dynamics_%28mechanics%29 + , http://dbpedia.org/resource/Wave_turbulence + , http://dbpedia.org/resource/Wind_wave + , http://dbpedia.org/resource/Continuum_mechanics + , http://dbpedia.org/resource/Flow_separation + , http://dbpedia.org/resource/Energy_spectrum + , http://dbpedia.org/resource/Young%E2%80%93Laplace_equation + , http://dbpedia.org/resource/Turbulence + , http://dbpedia.org/resource/Viscosity + , http://dbpedia.org/resource/Cascading_Waterfall + , http://dbpedia.org/resource/Wavenumber + , http://dbpedia.org/resource/Self-similarity + , http://dbpedia.org/resource/Kinematic_viscosity + , http://dbpedia.org/resource/Kinetic_energy + , http://dbpedia.org/resource/Mechanical_energy + , http://dbpedia.org/resource/Dissipation + , http://dbpedia.org/resource/Lewis_F._Richardson + , http://dbpedia.org/resource/Friction + , http://dbpedia.org/resource/File:Schematic-illustration-of-the-energy-spectrum-of-turbulent-velocity-cascade.png + , http://dbpedia.org/resource/Rate_of_strain + , http://dbpedia.org/resource/Category:Turbulence + , http://dbpedia.org/resource/Nonlinear + , http://dbpedia.org/resource/File:False_color_image_of_the_far_field_of_a_submerged_turbulent_jet.jpg + , http://dbpedia.org/resource/Kolmogorov_microscales + , http://dbpedia.org/resource/Statistical + , http://dbpedia.org/resource/Category:Water_waves + , http://dbpedia.org/resource/Andrey_Kolmogorov +
http://dbpedia.org/property/align left
http://dbpedia.org/property/curator G. Falkovich
http://dbpedia.org/property/quote Big whirls have little whirls , that feed on their velocity, , And little whirls have lesser whirls , and so on to viscosity
http://dbpedia.org/property/source —Lewis F. Richardson, 1922
http://dbpedia.org/property/title Cascade and scaling
http://dbpedia.org/property/urlname Cascade_and_scaling
http://dbpedia.org/property/width 30.0
http://dbpedia.org/property/wikiPageUsesTemplate http://dbpedia.org/resource/Template:Short_description + , http://dbpedia.org/resource/Template:Citation + , http://dbpedia.org/resource/Template:= + , http://dbpedia.org/resource/Template:Pi + , http://dbpedia.org/resource/Template:Scholarpedia + , http://dbpedia.org/resource/Template:Mvar + , http://dbpedia.org/resource/Template:Reflist + , http://dbpedia.org/resource/Template:Quote_box +
http://purl.org/dc/terms/subject http://dbpedia.org/resource/Category:Turbulence + , http://dbpedia.org/resource/Category:Water_waves +
http://www.w3.org/ns/prov#wasDerivedFrom http://en.wikipedia.org/wiki/Energy_cascade?oldid=1104432502&ns=0 +
http://xmlns.com/foaf/0.1/depiction http://commons.wikimedia.org/wiki/Special:FilePath/Schematic-illustration-of-the-energy-spectrum-of-turbulent-velocity-cascade.png + , http://commons.wikimedia.org/wiki/Special:FilePath/False_color_image_of_the_far_field_of_a_submerged_turbulent_jet.jpg +
http://xmlns.com/foaf/0.1/isPrimaryTopicOf http://en.wikipedia.org/wiki/Energy_cascade +
owl:sameAs https://global.dbpedia.org/id/ugVn + , http://yago-knowledge.org/resource/Energy_cascade + , http://dbpedia.org/resource/Energy_cascade + , http://it.dbpedia.org/resource/Cascata_di_energia + , http://www.wikidata.org/entity/Q20020306 + , http://rdf.freebase.com/ns/m.0138vnvz + , http://fr.dbpedia.org/resource/Cascade_turbulente +
rdfs:comment In continuum mechanics, an energy cascade In continuum mechanics, an energy cascade involves the transfer of energy from large scales of motion to the small scales (called a direct energy cascade) or a transfer of energy from the small scales to the large scales (called an inverse energy cascade). This transfer of energy between different scales requires that the dynamics of the system is nonlinear. Strictly speaking, a cascade requires the energy transfer to be local in scale (only between fluctuations of nearly the same size), evoking a cascading waterfall from pool to pool without long-range transfers across the scale domain.g-range transfers across the scale domain. , Nella meccanica del continuo, una cascata Nella meccanica del continuo, una cascata di energia comporta il trasferimento di energia dal moto su grandi scale al moto su piccole scale (chiamata cascata diretta di energia) o un trasferimento di energia da piccole scale a grandi scale (chiamata cascata inversa di energia). Questo trasferimento di energia tra scale diverse richiede che la dinamica del sistema sia non lineare. Questo concetto gioca un ruolo importante nello studio della turbolenza completamente sviluppata e fu descritta per la prima volta da Lewis F. Richardson negli anni '20.lta da Lewis F. Richardson negli anni '20. , La cascade turbulente est une forme de traLa cascade turbulente est une forme de transfert d'énergie entre les tourbillons à grande énergie cinétique et les plus petits qui absorbent et dissipent celle-ci. Ce mécanisme est à l'origine du spectre d'énergie turbulente dans un écoulement. Ce mécanisme a été expliqué qualitativement par Lewis Fry Richardson en 1922. On parle alors de cascade de Richardson. Les lois correspondantes ont été obtenues par Andreï Kolmogorov en 1941. Pour ces lois on utilise le terme de cascade de Kolmogorov.utilise le terme de cascade de Kolmogorov.
rdfs:label Cascade turbulente , Energy cascade , Cascata di energia
hide properties that link here 
http://dbpedia.org/resource/Cascade + http://dbpedia.org/ontology/wikiPageDisambiguates
http://dbpedia.org/resource/Energy_cascades + , http://dbpedia.org/resource/Inverse_energy_cascade + , http://dbpedia.org/resource/Turbulence_energy_cascade + , http://dbpedia.org/resource/Direct_energy_cascade + , http://dbpedia.org/resource/Inertial_subrange + http://dbpedia.org/ontology/wikiPageRedirects
http://dbpedia.org/resource/Turbulence + , http://dbpedia.org/resource/Robert_Kraichnan + , http://dbpedia.org/resource/Magnetic_helicity + , http://dbpedia.org/resource/Vortex_stretching + , http://dbpedia.org/resource/Turbulence_kinetic_energy + , http://dbpedia.org/resource/Eckart_Marsch + , http://dbpedia.org/resource/Quantum_turbulence + , http://dbpedia.org/resource/Magnetohydrodynamic_turbulence + , http://dbpedia.org/resource/Lewis_Fry_Richardson + , http://dbpedia.org/resource/Cascade + , http://dbpedia.org/resource/Miriam_Forman + , http://dbpedia.org/resource/Phosphorus_porphyrin + , http://dbpedia.org/resource/Outline_of_oceanography + , http://dbpedia.org/resource/Cold_district_heating + , http://dbpedia.org/resource/Multiscale_turbulence + , http://dbpedia.org/resource/Energy_cascades + , http://dbpedia.org/resource/Inverse_energy_cascade + , http://dbpedia.org/resource/Turbulence_energy_cascade + , http://dbpedia.org/resource/Direct_energy_cascade + , http://dbpedia.org/resource/Inertial_subrange + , http://dbpedia.org/resource/Kolmogorov_cascade + http://dbpedia.org/ontology/wikiPageWikiLink
http://en.wikipedia.org/wiki/Energy_cascade + http://xmlns.com/foaf/0.1/primaryTopic
http://dbpedia.org/resource/Energy_cascade + owl:sameAs
 

 

Enter the name of the page to start semantic browsing from.