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Abstract. Physicians nowadays have to consider a diverse range of data
sources when treating a patient. Semantic clinical data warehouses al-
low to easily add new data and to pro-actively help the physician mak-
ing sense of the data. In this work-in-progress paper we investigate an
approach of using Linked Data as the access mechanism and a graph
database for storage and query processing. We describe lessons learned
from a case study of discovering similar genes where we use an existing
similarity metric to derive new information, the Gene Ontology as a data
source, and SAP HANA as an efficient graph database.

1 Introduction

Examples of data sources that physicians nowadays have to consider when treat-
ing a patient include background information collected as part of trials or from
publications and encyclopedias, as well as genomic information [5, 4].

An example tool to support the physician in accessing and analysing the
data from such sources is the Patient Data Explorer (PDE) based on the SAP
HANA in-memory database deployed at the National Center for Tumor Diseases
(NCT) in Heidelberg3. PDE allows an overview of patients; to create diagrams
visualising the distribution of characteristics in patients; and to zoom-in to single
patients to get detailed information about diagnoses and therapies.

PDE can be improved in several ways: PDE uses a broadly-applicable entity
relationship data model about “interactions” and “observations” similar to a
Star Schema; adding additional background information such as ICD codes or
PubMed references would require to manually modify ETL pipelines and the
schema. For information coming from different sources heterogeneities remain,
e.g., different terminologies for diseases and drugs may be used and inconsisten-
cies and redundancies easily occur. Maschine Learning (ML) algorithms such as
for clustering of genes are difficult to apply for physicians and the results are
not written back to the data warehouse for provenance tracking and information
sharing.

3 http://www.sap-innovationcenter.com/2013/09/19/
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In this work-in-progress paper we argue that overcoming such challenges
is possible using Linked Data, graph databases, and semantic algorithms (Sec-
tion 2): we describe a use case for discovering similar genes (Section 3) and derive
lessons learned (Section 4). We mention related work (Section 5) and conclude
(Section 6).

2 Semantic Clinical Data Warehouse

See Figure 1 for the architecture. Information in the semantic clinical data ware-
house is presented to the user by a visualisation and analysis tool. To store, query,
and visualise arbitrary information we use a graph database and the following
intuitive data model (property graph): Relevant objects such as patients, inter-
actions, and observations are represented as vertices in the graph. Such objects
have properties with values of primitive datatypes such as String and Integer,
e.g., the surname of a patient. Objects are related to each other via edges in the
graph, e.g., a patient is diagnosed with a disease. Such relationships also can have
properties, e.g., provenance information about the algorithm or human expert
that has generated the relationship. The integrator and reasoner component 1)
translates an RDF graph to a property graph, 2) derives implicit information
useful for data integration and decision support of users, and 3) imports the
graph to the graph database. The RDF graph is crawled based on the Linked
Data principles.
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Fig. 1. Semantic clinical data warehouse based on Linked Data and graph database

This architecture has the following advantages: Already, there are large a-
mounts of life science data – directly or using LD wrappers – published using
such widely-adopted access mechanisms and standard vocabularies [1]. A graph
database is more schema-flexible than a relational database, i.e., if new data
sources introduce new vertices, edges, and properties in the graph, no database
administrator has to modify the schema. Linked Data allows to easily add new
data sources to the data warehouse by following new links to further objects on
the Web. Implicit information can be derived in two ways: 1) by evaluating OWL
axioms represented in RDF; for instance, semantics from the OWL 2 RL profile
such as equality can be evaluated using rule engines, and 2) by ML algorithms
that make use of ontological information, e.g., to discover similar genes. Also,
graph databases usually are designed to efficiently process analytical operations
over large graphs, i.e., can be used to efficiently compute and write-back results
from ML algorithms.
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3 Case Study of Discovering Similar Genes

In this section, we apply our approach to a use case for discovering similar genes
from a plant [4]. Similarity is an important basis for other relationships. For
instance, the effect of a drug depends on the genes it targets. If drugs target
similar genes, they likely have similar effects.

Relevant data sources for our prototype – HANA Linked Data AnnSim
(HLA) – are descriptions of genes4, gene annotations from experts5, and the
Gene Ontology (GO) with a concept hierarchy6.

Using OpenRefine with RDF extension, we translate the former two sources
to RDF and reuse links from the GO RDF representation. Crawling such data
results in one RDF graph with genes, concepts, and annotations between genes
and concepts.

HLA uses as a graph database HANA Graph, an extension to the HANA
in-memory database for storing and querying of property graphs [6]. Graphs are
logically stored in HANA using two (virtual) tables: one table for vertices and one
table for edges each with columns for an id and every possible property. Graph
queries over HANA Graph are issued using the so-called GEM language and are
translated to SQL queries over the two tables. Based on a column-oriented and
in-memory database, HANA Graph allows fast query processing.

An importer program then maps the crawled RDF graph to a property graph
and bulk loads the property graph to HANA Graph. Intuitively, the importer
generates for every triple two vertices for the subject and object (if not exist-
ing), and an edge for the predicate. HANA Graph then contains genes (e.g.,
AT5G23810) and concepts (e.g., Amino Acid Transport) as vertices, and rela-
tionships between genes and concepts as edges. For instance, there are annotation
relationships between genes and concepts as well as is-a relationships between
concepts. Vertices and edges can have properties, e.g., a concept has a textual
description. The graph is then extended with edges between genes describing
their similarity, and edges between concepts describing their distance in the is-a
concept hierarchy.

Such information we compute based on an existing algorithm, AnnSim [4].
AnnSim makes use of the distances between the concepts of two genes. Intu-
itively, the shorter the average path between any two concepts of two genes the
more similar the two genes. Both computed distances and similarities are written
back to HANA Graph as edges between concepts and genes, respectively. Every
edge has as a property a numeric value between 0 and 1 for the similarity and
distance, and – in case several different algorithms are used – the name of the
algorithm.

4 ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_

functional_descriptions
5 ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/ATH_GO_

GOSLIM.txt
6 http://purl.obolibrary.org/obo/go.owl
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As also visible in a screencast on our paper website7, the user of HLA gets
an overview of genes and their similarities to other genes; can zoom into sin-
gle genes to see textual descriptions of concepts; can visit concepts along the
concept hierarchy (Figure 2). Also, the user can ask for a graph view showing
similarities between genes based on distances between concepts (Figure 3). For
the visualisation, we used a visualisation engine called Symbiosis that can be
configured with a JSON-based template language to visualise a graph. Symbio-
sis uses HANA Graph and GEM for querying the data.

Fig. 2. Zoom-in to single gene (left) and
displayed concept hierarchy (right)

Fig. 3. Graph view of genes with smaller
distances in darker color

4 Lessons Learned

To draw preliminary lessons learned about the applicability of our approach,
we compared our HLA system with an implementation of AnnSim by Palma
et al. (AnnSim 1.0) [4] to compute pair-wise similarities of 20 genes from the
taxonomic class 1-aaap.

For both approaches, we use a workstation with Ubuntu 14.04 VM on W7
Intel Core i5-3360M CPU 2.80GHz, 16 GB RAM to execute the program logic.
In addition to that, for HLA, we use a server with SUSE Linux Enterprise Server
11.1 500 GB RAM, 80 cores to host HANA Graph. Table 1 compares the two
approaches. HLA uses the same data sources than AnnSim 1.0 but considers all
contained information and the newest versions.

Table 1. Available relevant data for HLA and AnnSim 1.0

Approach Size of data Triples Vertices Edges
HLA 537 MB 7,337,447 601,519 1,658,322
AnnSim 1.0 2.80 MB - 39,209 74,123

Correct Computation of Similarities. There is a mean squared error
between the results of HLA and AnnSim of 0.09. This difference we expect is
due to newer, possibly more elaborate versions of annotations and GO (version
1.2) used by HLA. We compared the results of both approaches with the gold
standard, a similarity metric based on the DNA sequence of genes (SeqSim).

7 http://people.aifb.kit.edu/bka/hla/
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The mean squared error between HLA and SeqSim (0.19) is lower than between
AnnSim 1.0 and SeqSim (0.36), indicating that AnnSim similarities improve with
newer data sources; yet, further experiments are needed to confirm this claim.

Scalable Computation of Similarities. Table 2 gives an overview of the
time for the different steps in the execution. Loading of data is estimated with
a connection of 6.7 Mbps download speed. Although HLA takes considerably
longer than AnnSim 1.0, we argue that HLA’s bottlenecks can be resolved and
that HLA is more promising for larger datasets.

Table 2. Elapsed query processing time (in sec) for computing similarities of 20 genes

Approach Prepare
Sources

Download
Data

Map
Graph

Load
Graph

Compute
AnnSim

Read
Queries

Write
Queries

HLA < 120 641 355 15 2,667 230 2,202
AnnSim 1.0 N/A 3 0 0 408 - -

AnnSim 1.0 uses a proprietary graph data format with reduced information
that is probably fast to generate (Prepare), download, and load. HLA uses a
more verbose but also more expressive graph model (RDF) and has to gener-
ate (Prepare), download, transform to property graph (Map) and load 15 times
more vertices, 22 times more edges and comprehensive properties such as tex-
tual descriptions. Loading graph data to HANA Graph showed fast and the
preprocessing steps we believe can be optimised by parallelisation.

AnnSim 1.0 uses program logic in C/C++ over arrays to compute the 400
similarities and displays the results to users. HLA loads the relevant data to
a graph database and uses program logic in Java to issue database queries to
efficiently compute the similarities and to write back the results to the data
warehouse. The query language GEM was useful and intuitive for graph-traversal
queries. For instance, the following GEM read query is issued using a special-type
function WIPE() to the SQL interface of HANA, recursively visiting one or more
edges of type rdfs:subClassOf, and returns a vertex table with all ancestors
of a GO concept: RESULT uri:myResult FROM { GO:0005634 }-[@core:type
= ’rdfs:subClassOf’]->(1,*);.

The program logic in HLA spent more than 90% of the time to compute a
specific part of AnnSim, a min-weight perfect matching (Blossom IV). We believe
we can optimise the Blossom IV execution, e.g., by running part of it directly in
HANA Graph via built-in and user-defined functions. Writing back of the results
to the data warehouse took a lot of time since done using single write queries
instead of a bulk load. In this case, since read queries to HANA Graph showed
fast, HLA should also scale with larger datasets, in contrast to AnnSim 1.0 that
does not outsource bulk loading, reading, and writing to an external database.
Computing additional information can be done offline. Interactive visualisation
over HANA Graph were possible using the Symbiosis engine.

Flexible Computation and Visualisation of Similarities. Whereas
AnnSim 1.0 was implemented specifically for the problem of efficiently computing
similarities of objects described in a proprietary format, HLA uses Linked Data
as a unified data model and standard access mechanism.
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New data sources can be added to HLA by providing more links to crawleable
Linked Data. We believe that efforts such as by Bio2RDF [1] to release life
science Linked Data will allow to semi-automatically resolve semantic conflicts
using OWL semantics and rules.

Other objects such as patients can be compared in HLA; AnnSim only re-
quires objects to be annotated with concepts and concepts to be described in an
is-a hierarchy. Algorithms that use other relationships and derive other informa-
tion can be added to HLA. The Symbiosis engine showed that – given sufficient
understanding of the domain experts’ problem – it is easily possible (5–10h of
manual work) to provide flexible visualisations over a graph-based data model.

5 Related Work

According to Haussler et al. [3] a Million Genome Warehouse has to pro-actively
process relevant data in data analysis pipelines to draw valid and useful medical
inferences. HLA accesses the Gene Ontology and computes AnnSim [4], yet,
can be extended with other biomedical ontologies and other semantic similarity
measures [5]. HLA uses the HANA Graph in-memory database [6] but may
also use other graph databases such as Graphium. Callahan and Dumontier [2]
present an approach to represent and evaluate scientific hypotheses based on
RDF and SPARQL.

6 Conclusions

In this work-in-progress paper, in a small case study of discovering similar genes
we illustrated the potential of modular access mechanisms with Linked Data,
queries over a schema-flexible graph database, and semantic algorithms to derive
new information. Continuously adding new data sources and data items, new
algorithms, and new visualisations leave exciting future work.
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