
OLAP4LD – A Framework for Building Analysis
Applications over Governmental Statistics

Benedikt Kämpgen and Andreas Harth

Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany
benedikt.kaempgen@kit.edu, harth@kit.edu

Abstract. Although useful governmental statistics have been published
as Linked Data, there are query processing and data pre-processing
challenges to allow citizens exploring such multidimensional datasets
in pivot tables. In this demo paper we present OLAP4LD, a frame-
work for developers of applications over Linked Data sources reusing
the RDF Data Cube Vocabulary. Our demonstration will let visiting
developers and dataset publishers explore European statistics with the
Linked Data Cubes Explorer (LDCX), will explain how LDCX makes
use of OLAP4LD, and will show common dataset modelling errors.

1 Introduction

According to the G8 Open Data Charter and Technical Annex1 governmental
statistics provide data of high value for improving transparency and encouraging
innovative re-use of data. In frontends such as Microsoft Excel, pivot tables
have proved intuitive to build and easy to understand for exploring statistics.
If published using Linked Data, statistics become easier to integrate with other
data, e.g., the GDP of a country in one and the population in another dataset
with linked country identifiers allow to compute the GDP per capita.

We have published more than 5,000 datasets from Eurostat2 as Linked Data,
yet, there are challenges to allow citizens to explore such datasets in pivot ta-
bles: Eurostat datasets exhibit varying number of dimensions, e.g., geo, time,
gender and age for the population dataset, which makes visualisations, such
as in two-dimensional line diagrams, and comparisons difficult. How to trans-
late analytical operations to queries over Linked Data sources? How to reduce
the dimensionality of datasets? Eurostat statistics are originally published using
SDMX and re-published as Linked Data in a Google App Engine; other statistics
such as from the World Bank are published differently. How to ensure that nec-
essary data is extracted from distributed sources and properly modelled? How
to pre-process and integrate heterogeneously modelled datasets?

Current systems [1, 5, 2, 4] do not help developers to build pivot analysis
applications over general datasets. This demo paper provides the following con-
tributions:
1 https://www.gov.uk/government/publications/open-data-charter/

g8-open-data-charter-and-technical-annex
2 http://estatwrap.ontologycentral.com/table_of_contents.html



2

(1) In Section 2, we present OLAP4LD, a development framework for ap-
plications over Linked Data sources reusing the RDF Data Cube Vocabulary.

(2) In Section 3, we present the Linked Data Cubes Explorer (LDCX) that
is based on OLAP4LD and allows the exploration of governmental statistics.

After describing related work in Section 4, we conclude in Section 5.

2 OLAP4LD Integration and Analysis Framework

OLAP4LD3 is an Open Source Java framework for building analysis applications
over statistics published as Linked Data. As illustrated at the top of Figure 1,
OLAP4LD implements olap4j, a standard interface between OLAP frontends
and backends. Application developers can make use of a common abstraction
of datasets as data cubes, the quasi-standard analytical query language MDX,
and existing olap4j clients such a Saiku and JPivot. As illustrated at the bot-
tom of the architecture, OLAP4LD provides access to multidimensional datasets
published as Linked Data reusing the W3C-standardised RDF Data Cube Vo-
cabulary (QB). QB allows to represent general datasets such as statistics or from
sensors and is widely-adopted.

Fig. 1. Components of OLAP4LD.

Fig. 2. Pivot table schema from a typical
MDX query.

OLAP4LD roughly consists of two components. The olap4j Driver Compo-
nent translates queries from an olap4j client to queries more suitable for process-
ing over Linked Data sources in the Linked Data Cubes Component. Vice-versa,
the olap4j component translates results from Linked Data sources to represen-
tations understandable by the client.

Metadata queries are methods such as getCubes(...) and getMeasures(...)

that return multidimensional elements, i.e., data cubes containing facts with
members for a pre-defined set of dimensions (independent variables) that deter-
mine the value of one or more measures (dependent variables). In Linked Data,

3 http://linked-data-cubes.org/index.php/Olap4ld



3

multidimensional elements are identified and described using sets of RDF terms;
OLAP4LD represents RDF terms using Nodes from the NxParser library. The
schema of multidimensional elements from Linked Data, i.e., the name and types
of columns of List<Node[]> is adopted from the olap4j specification.

Analytical (MDX) queries return data from a data cube to be displayed in a
two-dimensional pivot table as illustrated in Figure 2: one or more queried data
cubes, lists of member combinations (positions) from a fixed set of levels for
rows and columns, and member combinations from a fixed set of levels as filter
conditions. For instance, from a Eurostat dataset “Employment Rate”, we may
query for a pivot table containing sex as dimension on columns (e.g., position
F), time and place as dimensions on rows (e.g., position 2005, AT). Results of
analytical queries fill the cells of the pivot table, e.g., that 64.9% of women in
Austria in 2005 have been employed.

OLAP4LD defines an analytical query as a nested set of common operators
from an OLAP algebra: For every queried data cube, Base-Cube loads the rele-
vant data defined by the dataset URI; for the chosen measures or if no measure
is chosen the first measure, Projection removes not selected measures; for every
possible member combination on axes, Dice removes filtered dimension mem-
bers; Slice removes every dimension not mentioned in either column or row axis
(i.e., aggregates over with aggregation function of measures); and for any higher
level selected on columns or rows axes, Roll-Up aggregates dimensions to higher
levels. Finally, all resulting data cubes are joined via Drill-Across. Note, the
drill-across operator requires as input equally-structured data cubes. For more
information about the definition of analytical queries, see the documentation
and previous work [3].

In the Linked Data Cubes Component, for metadata queries, any instance of
qb:DataSet is mapped to a data cube. Similarly, other resources represented
in QB are mapped to multidimensional elements. For analytical queries, OLAP
operators are executed over instances of qb:DataSet.

Queries can be executed in different ways, e.g., reusing a common OLAP
engine over relations or in-memory, and directly with an RDF store; aggregated
values from the data cube may be computed on demand or views selected and
maintained; similarly, data pre-processing and integration can be done differ-
ently, e.g., a database may be pre-filled with all relevant data in advance or
populated dynamically; also, there are various ways with which information can
be provided, e.g., packed in data dumps or queryable from several SPARQL end-
points. For executing metadata and analytical queries, an OLAP4LD application
has to implement a Linked Data Cubes Engine. Developers can reuse existing
engines and concentrate on the challenges of query execution and integration
over Linked Data sources.

3 OLAP4LD for the Linked Data Cubes Explorer

The Linked Data Cubes Explorer (LDCX)4 is based on OLAP4LD and allows
citizens to explore governmental statistics. In our demonstration, we will let vis-

4 http://ldcx.linked-data-cubes.org/projects/ldcx/



4

itors try the three-step user interface of LDCX: 1) a user selects one or more
comma-separated URIs of qb:DataSets. With “Explore Dataset. . . ”, metadata
queries are issued to populate the user interface; 2) the user selects measures
to be displayed in the pivot table cells; 3) the user selects dimensions to add
member combinations to rows and columns of the pivot table and clicks “Up-
date Table. . . ”. Note LDCX automatically queries every dimension on the most
granular level since multi-level hierarchies are rarely used and users can still
slice dimensions to view datasets on a higher aggregation level. In our demon-
stration we will show how changes in modelling are propagated to LDCX by
live modifying a published QB dataset. Also, we show common modelling errors
in existing QB datasets such as missing dimension rdfs:range or qb:CodeList
and observations not adhering to data structure definitions.

LDCX implements an EmbeddedSesameEngine as Linked Data Cubes En-
gine that evaluates metadata queries using SPARQL templates filled with Node
parameters. For each multidimensional element, there are several SPARQL tem-
plates for different ways of modelling, e.g., measures can define their own ag-
gregation functions or AV G and COUNT are used by default. To evaluate
analytical queries, the logical query plan is translated to a physical query plan;
for each separate drill-across sub-query plan, we execute our OLAP-to-SPARQL
algorithm [3] and join the results. Before executing a metadata or analytical
query with SPARQL, the EmbeddedSesameEngine automatically loads neces-
sary data into an embedded Sesame RDF store. EmbeddedSesameEngine first
resolves all queried dataset URIs, then in turn asks SPARQL queries to its
store for additional URIs to resolve and load; EmbeddedSesameEngine resolves
all instances of concepts defined in the QB specification in the order they can
be reached from the dataset URI, from qb:DataStructureDefinitions over
qb:ComponentProperty to single qb:Concepts. Since there is no standard way
to publish QB observations, the engine assumes that the observations are rep-
resented as blank nodes and stored at the location of the dataset URI. Such
“directed crawling” of the data cube has the advantage that necessary data is
found quickly and not all information has to be given in one location, but can
be distributed and reused, e.g., the range for the ical:dtstart dimension is pro-
vided by its URI. EmbeddedSesameEngine ensures that the entire QB dataset
is loaded and well-formed according to the QB specification; SPARQL queries
materialise implicit information and check integrity constraints.

For an online questionnaire not considering drill-across, 8 of 20 asked busi-
ness engineering students at KIT used LDCX in 11 tasks, e.g., to find “the
average GDP for Germany” in example and real datasets and rated the sys-
tem according to 13 statements with average 2.5 from 1 (strongly agree) to 10
(strongly disagree), e.g., regarding usability. LDCX seems usable and robust;
improvements are possible regarding slow performance, counter-intuitive error
messages and cumbersome selection of datasets. For a workload of 5 drill-down
and 5 slice queries over datasets with 10 to 1000 observations we observed that
elapsed query time was mainly spent for loading the datasets and much less for
query plan generation and execution.



5

4 Related Work

The most common format to share datasets is XML. Other representations such
as the Google Dataset Publishing Language, SDMX and XBRL require specific
tools or focus on specific domains and provide few possibilities to link, and less-
widely adopted mechanisms to access data over the Web.

Applications are available that, similar to LDCX, try to hide most RDF-
specificities from the user to analyse a QB dataset. In the stats.270a.info analy-
sis platform [1] users can select two datasets from a fixed set for integration on
the time and location dimension and for finding correlations in a scatter plot.
McCusker et al. [4] present qb.js to analyse the effect of tobacco policies on con-
sumption. Though presenting useful systems to analyse QB datasets in specific
data integration scenarios, it is unclear how well such approaches can be applied
to more general use cases. Other systems provide more general analyses: Salas
et al. [5] present CubeViz that offers faceted-browsing and visualizations of QB
datasets. Hoefler [2] present the CODE Visual Analytics Wizard that automat-
ically suggests appropriate chart types for QB datasets. LDCX automatically
loads and checks the modelling of datasets and allows exploration of general
datasets in pivot tables. Although the interface of LDCX is not as nice as of
other systems, we argue that OLAP4LD reduces the costs of building analysis
applications since UIs and backends are separated and can be reused.

5 Conclusions

In this demo paper, we have presented OLAP4LD, a framework for building
analysis applications with Linked Data reusing the RDF Data Cube Vocabu-
lary. In a demonstration of OLAP4LD we allow visitors to validate and explore
governmental statistics with the Linked Data Cubes Explorer (LDCX).

References

1. Capadisli, S., Auer, S., Riedl, R.: Linked statistical data analysis. In: Semantic Web
Challenge 2013 (2013)

2. Hoefler, P.: Linked Data Interfaces for Non-expert Users. In: The Semantic Web:
Semantics and Big Data. Springer Berlin Heidelberg (2013)

3. Kämpgen, B., Harth, A.: No Size Fits All - Running the Star Schema Benchmark
with SPARQL and RDF Aggregate Views. In: ESWC (2013)

4. McCusker, J.P., McGuinness, D.L., Lee, J., Thomas, C., Courtney, P., Tatalovich,
Z., Contractor, N., Morgan, G., Shaikh, A.: Towards Next Generation Health Data
Exploration: A Data Cube-Based Investigation into Population Statistics for To-
bacco. In: Proceedings of the 2013 46th Hawaii International Conference on System
Sciences (2013)

5. Salas, P.E.R., Martin, M., Mota, F.M.D., Auer, S., Breitman, K., Casanova, M.A.:
Publishing Statistical Data on the Web. In: Proceedings of the 2012 IEEE Sixth
International Conference on Semantic Computing (2012)


