

Web of Things Use Cases and Solutions at FZI

Speaker: Benedikt Kämpgen (FZI)

Location: W3C Web of Things Workshop, Munich

Date: 20.04.2015

Semantic Web / Web 3.0	Web of Things
Knowledge representation (OWL) Reasoning about static domains	Subsymbolic data Real-time data Dynamic domains
Linked Data	Devices first-class things Light-weight web servers
Software Agents	Cyber-physical systems

- FZI
- Web of Things Use Cases
- Possible Contributions

FZI Forschungszentrum Informatik

- Improving the knowledge exchange between academia and industry (~135 scientists)
- Information Process Engineering division (~35 scientists)
- Strong interlinks with Web technologies
 - Knowledge Management (OWL)
 - Complex Event Processing (WebSocket, SSN)
 - Semantic Data Management (Linked Data)

- FZI
- Web of Things Use Cases
- Possible Contributions

- FZI
- Web of Things Use Cases
 - Ambient Assisted Living
 - Digital Enterprise
- Possible Contributions

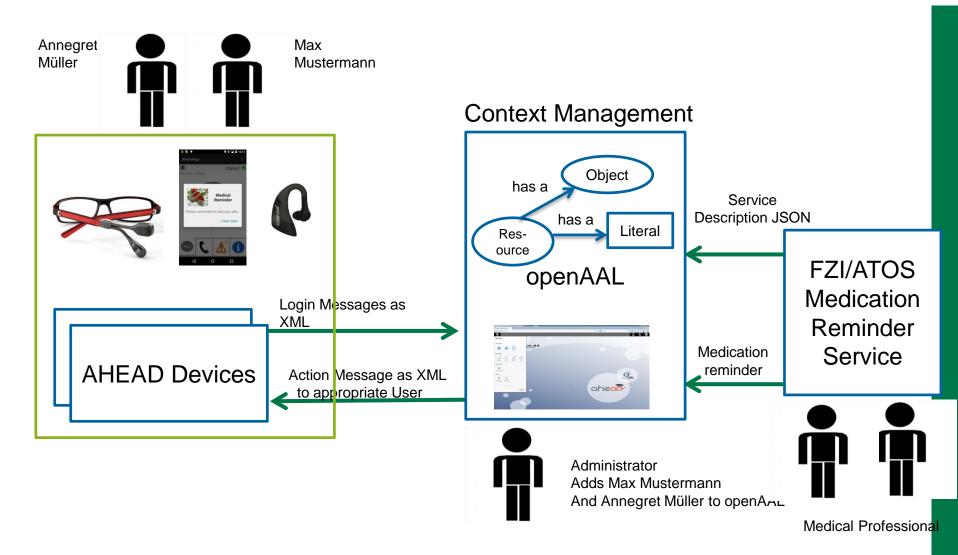
Ambient Assisted Living Use Case

Goal

- Increasing comfort and security for elderly and sensing/acting handicapped people
- Usage of intelligent sensors for the identification of relevant situations
- Care- and case-management tools for better therapy

Challenges

- Integration of systems and services from different parties and platforms
- Maintenance, robustness and extensibility
- Privacy


Ambient Assisted Living Use Case (2)

- Project: AICASys (related projects: universAAL, Ahead, Augment)
- What stakeholders?
 - Sensing or acting handicapped people, nursing staff, relatives, physicians...
- What things?
 - Hearing device with heart frequency sensor and microphone
 - Eye Tracking Glasses
 - Wheel chair
 - Smart phone
 - Medication reminder service
 - Smart home sensors (door, window, lamps)
 - PAUL home automation interface
- What benefits from linking between things?
 - We can estimate, what action user wants to execute (e.g., turn on lamp)
 - We know the current context of the user and can decide how to best contact him (e.g., via phone)
 - We can estimate the background knowledge of the user and adapt the user interface
- What benefits from interactions between things?
 - The medication reminder service and the smart phone of the user could evaluate whether the user needs reminders
 - Privacy is improved since only necessary information is exchanged directly between things
 - Things could communicate their battery status
- What other solutions?
 - Information bus: Difficulty in configuring all systems
 - Centralised knowledge base/data warehouse: Privacy concerns

Example AAL Scenario

- FZI
- Web of Things Use Cases
 - Ambient Assisted Living
 - Digital Enterprise
- Possible Contributions

Digital Enterprise Use Case

Goal

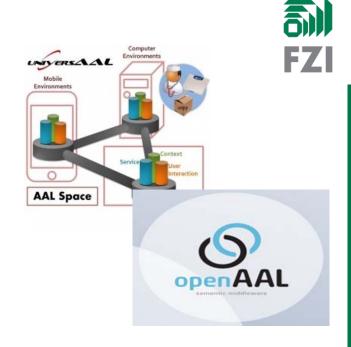
- Transition from sensing enterprises to proactive enterprises
- Go from search, sensing, anticipating, to proacting.
- Knowing "what might happen" and doing "what should be the best action"

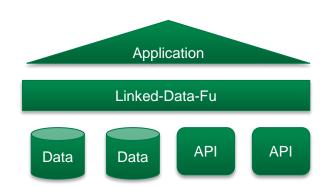
Challenges

- Identify current situation / process and system behaviour and deviations from ideal
- Scalable, distributed architecture for management and processing of IoT big data
- Extensibility (new sensors, KPIs, contextual information)

20.04.2015 © FZI Forschungszentrum Informatik

Digital Enterprise Use Case (2)


- Project: ProaSense
- What stakeholders?
 - Decision Makers, Business Analysts, Workers and Developers
- What things?
 - Workers (do initial work in production process)
 - Transport or production machines/roboters
 - Products
 - Materials (60 different raw plastic materials)
 - Production/Equipment/Staff training plan
- What benefits from linking between things?
 - Understanding relationship between behaviour of things and KPIs downtime and scrap rate
 - Holistic assessment of product quality
- What benefits from interactions between things?
 - (currently, centralised)
- What other solutions?
 - Tipco



- FZI
- Web of Things Use Cases
- Possible Contributions

Possible Contributions

- Describing things
 - Semantic MediaWiki for human in the loop
- Linking things
 - openAAL centralised system for registering, discovering, connecting devices
 - Linked APIs for automatic composition of services
 - OLAP4LD for automatic numeric dataset integration with QB vocabulary
- Interaction between things
 - Linked-Data-Fu / ETALIS rule-based language and system for event processing
 - Semantic Event Processing Pipelines modelling language for big data applications based on KAFKA, STORM

Conclusions

- Interested in following goals of WoT
 - Interoperability
 - Flexibility (adding new types of sensors, replacing sensors...)
 - Privacy
- Interested in following technologies
 - Stream data protocols
 - Rule engines
 - Service description languages

Thanks!

- Interested in following goals of WoT
 - Interoperability
 - Flexibility (adding new types of sensors, replacing sensors...)
 - Privacy
- Interested in following technologies
 - Stream data protocols
 - Rule engines
 - Service description languages

