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Abstract. Purpose: Assistance algorithms for medical tasks have great
potential to support physicians with their daily work. However, medicine
is also one of the most demanding domains for computer based support
systems, since medical assistance tasks are complex and the practical
experience of the physician is crucial. Recent developments in the area
of cognitive computing appear to be well suited to tackle medicine as an
application domain.

Methods: We propose a system based on the idea of cognitive computing
and consisting of auto-configurable medical assistance algorithms and
their self-adapting combination. The system enables automatic execution
of new algorithms, if they are made available as Medical Linked APIs
and are registered in a central semantic repository through a rule-based
engine. Learning components can be added to the system to optimize
the results when numerous Medical Linked APIs are available for the
same task. Our prototypical implementation is applied to surgical phase
recognition based on sensor data and image progressing algorithms for
tumour progression mappings.

Results: Our results suggest that such assistance algorithms can auto-
matically be configured in execution pipelines, candidate results can be
automatically scored and combined and the system can learn from expe-
rience. Furthermore, our evaluation shows that the Medical Linked APIs
are providing the correct results as they did for local execution and run
in a reasonable amount of time.

Conclusion: The proposed solution is applicable to a variety of medi-
cal use cases and effectively supports the automated and self-adaptive
configuration of cognitive pipelines based on medical interpretation al-
gorithms.



1 Introduction

Assistance algorithms for medical tasks have great potential to support physi-
cians with their daily work. This includes image processing, simulations and in-
terpreting sensor data, rule-based treatment recommendations and many more.
However, medicine is also one of the most demanding domain for computer based
support systems. This has diverse reasons, two important ones are:

(a) Since medical assistance tasks are extremely complex there is not one single
algorithm which can solve a complex task alone. Typically, a combination of
heterogeneous methods from probabilistic reasoning, knowledge based infer-
ence and information retrieval is needed. In addition, those methods need to
be executed both, in sequence and in parallel, producing a list of candidate
results.

(b) Medicine is not an exact science, so experience of the physician is crucial.
Much of the knowledge can not be formalized easily, but is gained over years
of hands-on-experience.

A very recent development in research that tackles this sort of complex tasks
is cognitive computing, most known by IBM’s Watson system [4]. While the ini-
tial application domain of Watson was general knowledge (the Jeopardy! Chal-
lenge) [4] IBM turned to medicine as a promising second application domain.
Just recently IBM presented ongoing work on its Oncology Expert Advisor [2].
While the original Watson system is very much focused on Q&A over textual
content, the principles of cognitive computing can be applied to many diverse
medical assistance tasks.

We propose a reactive approach based on the idea of cognitive computing to
execute algorithms annotated with ontological concepts based on the Resource
Description Framework (RDF). Whenever possible, a learning component com-
bines the results of different algorithms for a single task. We apply our methods
to two medical use cases - surgical phase recognition based on sensor data and
image progressing algorithms for tumour progression mappings.

Our prototypical implementation, suggests that when provided with real
world data,

(i) assistance algorithms can be described and executed in an automatic fashion
based on the context provided as input, instead of hand-engineered execution
pipelines.

(ii) several alternative paths can be executed in parallel and generate a set of
candidate outputs.
(iii) candidate outputs can be automatically scored and selected by evidence.

In this paper we call such auto-configurable medical assistance algorithms
Cognitive Apps and their self-adapting combination and execution a Cognitive
Pipeline.

The remainder of this paper is structured as follows: In the next section we
will discuss related work, before introducing our two application scenarios. In



Sec. 4 the components of our software system are described. In Sec. 5 and 6
initial empirical results in our application scenarios are presented. The paper
concludes with a discussion and future work.

2 Related Work

There is an ongoing research interest in so-called 'workflow systems’ that en-
able describing and executing algorithms of different kinds. The work centered
around semantic workflows [7] aims to enable the automatic composition of com-
ponents in large-scale distributed environments. The combination of individual
algorithms is supported through generic semantic descriptions also enabling en-
sembles of learners to be formulated. This requires stipulating necessary condi-
tions and constraints of how to combine the algorithms. The workflow system
is able to match components and data sources and provides for high degrees of
automation when processing user requests.

Taverna [15] is a another scientific workflow system supporting process pro-
totyping by creating generic service interfaces and thus easing the integration
of new components. Semantic descriptions are being used to better capture the
view of the scientists. Taverna is able to integrate data from distributed sources
and automate the workflow creation process for users. A graphical workflow
workbench can be used by scientific staff to manage their processes, hiding the
complexities of the underlying architecture.

In [23] abstract workflows are being created as domain models formalized
using the Web Ontology Language (OWL) to enable dynamic instantiation of
real processes. These models can the be automatically converted into more spe-
cific workflows resulting in OWL individuals. The semantics of the data are well
represented at any point during the workflow. The components can be reused
by using them in another context or process and these abstract representations
can be easily shared across the Web through OWL classes.

In contrast to previous approaches, our work benefits from lightweight se-
mantics, minimizing the efforts required for describing the algorithms and the
used data. Furthermore, it represents a novel and innovative contribution, since
it combines semantic technologies with learning approaches. Currently, we are
not focussing on GUIs. Instead, we aim to provide the users with transparency
for what the system is doing, i.e. based on which assumptions it chose the algo-
rithms and which evidence it used. As the above approaches, we also leverage
semantic descriptions but use a combination of OWL and the Resource Descrip-
tion Framework (RDF) as basis, which makes our system considerably different
in designing and providing the algorithms. In addition, none of the approaches
employ a knowledge base storing performance results and trying to reuse this
evidence in order to optimize results by learning.



3 Scenarios for the Self-Adaptable Algorithms

The work present here has be applied within the context of the cognition-guided
surgery project SFB/Transregio 125 that aims to develop assistant systems for
surgeons. In particular, empirical knowledge, facts and patient data are to be
combined to identify and characterize the current medical situation and its needs,
and eventually perform appropriate actions. Our system has been applied in the
context of two use cases — Surgical Phase Recognition and Tumour Progression
Mapping, which are described in detail below.

3.1 Surgical Phase Recognition

Surgical phase recognition and information filtering is in the focus of active re-
search in medical information science [3], [11]. Surgeons today are faced with
a huge variety of intraoperative information sources. Preoperative planning,
CT/MRI images, vital signs of the patient and various device states are avail-
able at any point during the surgery. The problem is that only a small fraction
of the available information is actually relevant in a given situation. Showing
all information at once is likely to do more harm than good as the data will
outpace human ability to process it [9]. In order to make full use of comput-
erized surgery, we need methods to infer the current phase of the surgery and
to thus automatically filter information and only present the currently relevant
bits to the surgeon. Technically, phase recognition is done by analyzing situation
features called activities [14], [12]. Activities are triples consisting of the used
instrument, the performed action and the corresponding anatomical structure,
e.g. <Scalpel, cut, Gallbladder>. We define phases as sequences of activities, in
which the surgeon needs a specific set of information. The aim of surgical phase
recognition is to analyze the currently occurring activities and infer the cur-
rent phase. Intraoperativey , these activities are recognized using sensor analysis
techniques [18]. For evaluation and testing, we use manually annotated videos
of surgeries, where clinical experts provide the ground truth, on which activ-
ities occurred during the course of the surgery. The annotations were created
using the SWAN-Suite software [13]. We are applying our approach to SWRL
Phase Recognition introduced in [10] and a Learning-based Phase Recognition al-
gorithm, which utilizes training samples (i.e. annotated surgeries with activities
as mentioned before).

3.2 Tumour Progression Mapping

Tumour Progression Mapping (TPM) is an approach to visualize the timely
progression of brain tumours for radiologists. The process of generating a TPM
produces numerous images over time exhibiting different characteristics. Radiol-
ogists want to see the development of the glioblastoma since the last surgery but
this prerequisites tedious and complex tasks. Reasons are that glioblastoma grow

! http://www.cognitionguidedsurgery.de



irregularly and assessments are being conducted by visually comparing scans in
different point of time and different shifts. The lack of image registrations impair
these problems. The transformation of the TPM approach applied to the follow-
up appraisal of glioblastoma was published in [6] and [16] and will be integrated
in this paper to emphasize the configuration capabilities of our system.

The workflow for tumour progression mapping is illustrated in figure 1. The
images are stored in a PACS and converted into a common format (NRRD).
A mask for the brain region is being created in the next step, ensuring that
subsequent tasks are not influenced by bones or other structures. All prevalent
brain images of a patient are then being spatially registered. The following nor-
malization task adapts the intensities of MRI scans yielding similar values for
similar tissue types. If additional annotations for a patient are prevalent, the
normalization becomes more robust. The TPM can now be created. Optional
additional steps are automatic tumour segmentation and subsequent integration
into the map.
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Fig. 1. Data-driven Workflow of TPM Image Processing Algorithms [16]

4 System Components

We enable medical interpretation algorithms such as surgical phase predictors
or image preprocessors to automatically run when needed in potential ad-hoc
workflows with optimal set ups. This is realized by implementing the following
components:

1. A Knowledge Base with information about use cases, algorithms and data.

2. Cognitive Apps — algorithms are annotated with semantic metadata and
made available on the Web. The algorithms access the necessary input data
from the knowledge base and feed back the results.

3. An Execution Engine which automatically finds, initializes and runs the
algorithms, based on the information stored in the knowledge base.

4. An Evidence-based Learning component to return the optimal result for
the task at hand, given evidence in the knowledge base.



We use methods developed for the Semantic Web to create semantic anno-
tations for algorithms, and the data they are consuming and producing. The
Resource Description Framework (RDF) is being used to to create lightweight
algorithm and data annotations. Concepts and instances, which are created, are
integrated following the Linked Data principles? by persisting resources as URIs
in the Web and creating links between them. Communication between compo-
nents is enabled by using web technologies such as HT'TP methods.

By combining these components we enable a cognitive pipeline which does
not require manually defined procedures and improves over time due to consis-
tently feeding the knowledge base. Cognitive Apps are semantically annotated
interpretation algorithms which are made available by combining Linked Data
concepts and web services.

4.1 Knowledge Base
In the following, we describe the system components in more detail.

Semantic MediaWiki A Semantic MediaWiki (SMW) is used to enable semi-
structured annotations of information from both the medical and technical worlds,
which are then instantly available as RDF under persistent URIs. The SMW en-
ables domain experts to semantically annotate their use cases, algorithms and
data to formally define their interaction. The central data taxonomies and a
generic templates for describing algorithms are constantly manually updated
based on new domain knowledge. Domain experts thus do not have to learn to
modell OWL or RDF ontologies to create the semantic descriptions needed for
self-adaptive interpretation algorithms.

Semantic Patient Data Store An instance of the XNAT? platform — an open
source imaging informatics software platform — offers the possibility to store in-
stance data for different medical departments across their boundaries. We devel-
oped a RDF conversion for the platform to be able to publish all patient-related
data with common vocabulary. This enabled us to enrich the prevalent informa-
tion structure of XNAT with newly defined predicates. One can either upload
pure RDF with links to patients or upload non-RDF files and link them to cen-
trally defined concepts. Ideally, these semantic annotations suffice to characterize
the files completely.

4.2 Cognitive Apps

Semantic Algorithm Descriptions We developed a generic template for cap-
turing the necessary semantic annotations in order to describe the interpretation
algorithms. It consists of functional and non-functional requirements. Each func-
tional and non-functional requirement was modelled in the SMW and can be used
as a semantic annotation.

— Nen-functional requirements comprise the following information:
http://linkeddata.org

3 http://www.xnat.org



— Name: A unique name or identifier for the algorithm within the project.

— Contributors: A list of contributors to the algorithm.

— Description: A high-level textual description of the algorithm functionality.

— Algorithm Class: The type of algorithm, based on a controlled taxonomy of
algorithms.

— FEwvaluation Metrics: Possible evaluation metrics for validating input instances.

— Source Code: Links to code repositories of the algorithm.

— Implementation languages: A complete list of the languages, in which the
algorithm is available.

— Service Endpoint: This URI depicts the location where the Linked API is
executable.

— Ezample Requests: A list of URIs pointing to exemplary requests of the
Linked API in any RDF serialization.

— Ezample Responses: A list of URIs pointing to exemplary responses of the
Linked API in any RDF serialization.

Functional requirements consist of concrete inputs and outputs of the
algorithm and pre- and postconditions of the execution:

Inputs: The inputs of the algorithm are either resources of type file or re-
sources of type parameter. These resources must provide further information
about their data type, about the concepts occurring in the input, about the
physical format and if they are required for the execution.

— Preconditions: Every input must be part of a precondition to be able to
specify additional constraints the algorithm has on the inputs and additional
features the input should have for the algorithm to work well.

Outputs: The description of the outputs must have the same features as the
one of inputs.

— Postconditions: The description of the postconditions must have the same
features as the one of the preconditions. Features are to depict the implica-
tions on the output if the algorithm worked well.

In particular, the combination of pre- and post conditions, and algorithm
class enable us to select adequate algorithms for completing a particular task
(or task sequences). Central for our learning endeavours is stipulating evalua-
tion metrics for an algorithm. This feature depicts if and how the system can
automatically quantify results based on training samples or approximate them
by certain variables.

Medical Linked APIs The basic idea is to make the interpretation algorithms
(e.g. image classifiers, simulation algorithms or sensor interpretation techniques)
available through APIs with ontological annotations. The algorithm itself can be
hosted on any server and makes its functionality accessible via remote procedure
calls. A so-called Linked API [19] then calls the server functions and extends the
interface with a RDF description (i.e. ontological annotations) containing all the
information presented in section 4.2. We call Linked APIs for medical assistance
tasks Medical Linked APIs and will continuously refer to them as such in the rest



of the paper. Medical Linked APIs provide their functional and non-functional
requirements as part of this description.

We use the SMW as a repository of the available Medical Linked APIs. This
is done by creating a page for each algorithm with all the information stipulated
in section 4.2. The repository can either be browsed by people who want to test
or reuse the Medical Linked API or by the execution engine.

The results computed by the Medical Linked APIs are directly saved in the
semantic patient data store. Ontological annotations are automatically created
comprising the inputs used, the outputs produced, the Medical Linked API em-
ployed and a time stamp.

4.3 Evidence-based Learning

The big picture of ensemble learning methodologies is being elaborated in [17].
The underlying assumption of combining algorithms for a specific task is that
more algorithms might better generalize and generate more stable results. There
are numerous different approaches to combine algorithms, e.g. boosting [5], bag-
ging [1], stacked generalization [22] or mixture of experts [8].

We follow the vision of a self-adaptive learner using observed evidence, as
presented in [21]. To optimize the results of a single task with given pre- and
postconditions, we employ a technique inspired by both instance-based learning
and ensemble learning to dynamically combine the results of available interpre-
tation algorithms in a generic way.

The evidence the learner uses comprises annotated training samples. These
might include pairs of surgical activities (e.g. <knife, cut, kidney>) and the
matching phase (e.g. resection) or other quantifiable input output pairs. Based
on the ontological annotation of the latter, the learner searches for the closest
k training instances. Each possible interpretation algorithm has then to be exe-
cuted on the £ closest training instances. Since the true results for the training
set is known, the learner can calculate weights based on the performance of the
algorithms. The result for the current data instance is obtained by a weighted
majority voting. Deriving the closest data instances is not trivial, since it is
dependent on the used semantic annotation and the similarity metric. These
decisions have to be ontologically specified for each scenario.

The learning component is also made available as ontologically as Linked API
and is being referred to as Evidence-based Learning Linked API.

4.4 Execution Engine

The information needed to run a Medical Linked API is directly encoded in
the ontological description. The precondition of a Linked API specifically states
what data is needed to execute the algorithm and the algorithm class enables
querying specific Medical Linked APIs. We leverage the declarative nature of the
algorithm descriptions and execute the algorithms reactively on a data-driven
basis. This implies that no workflows are manually defined and no explicit trigger
is needed to run the algorithms.



We therefore use the Linked Data-Fu engine[20]. It enables defining rules to
manage the interaction with resources on the Web (in our case the execution of
Linked APIs) and to virtually integrate distributed data sources. As described
earlier, the semantic patient data store is an XNAT instance with a RDF exten-
sion. We defined rules to browse through all ontologically annotated projects,
patients and files to have all the patient-relevant data.

The preconditions of the Medical Linked APIs are used as if condition for the
rules. The concrete instantiation of the precondition with the available ontologi-
cally annotated data is the input to the Medical Linked A PI, which is transmitted
via a HTTP POST request. The Engine first gathers all data by applying the
XNAT-specific rules and then executes all Medical Linked APIs whose precon-
ditions are fulfilled by respective patients. If further data sources have to be
integrated the engine has only to be enriched with more data-dependent rules.
This also covers real-time scenarios, in which continuous data streams have to
be polled.

Evidence-based Learning Linked API is integrated into the workflow via rules
listening to feed back of Medical Linked APIs.

The Linked Data-Fu execution engine is made available as Linked API and
will be referred to as Linked Data-Fu Linked API We can dynamically stipulate
the frequency how often the rules are to be checked and enable the manual
triggering of workflows by end-users.

Figure 2 illustrates the interplay of all components and integrates both paral-
lel configuration of phase recognition and sequential configuration of TPM image
processing algorithms.
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Fig. 2. Interplay of system components based on phase recognition and TPM
image processing algorithms
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5 Parallel Configuration of Surgical Phase Recognition
Linked APIs with Evidence-based Learning

The scenario implementation comprises the execution and combination of two
phase interpretation algorithms as introduced in the section 3.

5.1 Phase Recognition Linked APIs

We wrapped all our Phase Recognition algorithms as Linked APIs to make them
permanently available and not rely on any particular platform or programming
language. Therefore, algorithms are also directly addressable via a URI and the
communication is handled via HTTP.

Here we provide two examples of Phase Recognition Linked APIs —two phase
recognition algorithms wrapped to consume and produce RDF, which conve-
niently integrates the APIs with the knowledge base and the semantic patient
data store. As we have to model pre- and postconditions based on the algorithm
inputs and outputs, ontological annotations for the data was the prerequisite.
Pleas see figures 3 and 4 for the pre- and postconditions for the Learning-based
Phase Recognition Linked API in the RDF serialization TURTLE 4.

PREFIX sp: <http://surgipedia.sfbl25.de/wiki/Category/>
PREFIX lap: <http://surgipedia.sfbl25.de/files/lapOnt.owl#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

?trainingSample rdf :type sp:AnnctatedSurgery.
?ontology rdf:type sp:0ntology.

?event rdf :type sp:SurgicalEvent.

?event sp:instrument ?instrument.

?event sp:action ?action.

?event sp:structure ?structure.

?instrument rdf:type lap:Instrument.

?action rdf:type lap:Instrumental Property.
?structure rdf:type lap:TreatedStructure.

Fig. 3. Preconditions for Learning-based Phase Recognition Linked API

PREFIX sp: <http://surgipedia.sfbl25.de/wiki/Category/>
PREFIX lap: <http://surgipedia.sfbl25.de/files/lapOnt.owl#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>

?phase rdf:type lap:Phase.

Fig. 4. Postconditions for Learning-based Phase Recognition Linked API

We observe the algorithm class Phase Recognition as part of the central al-
gorithm taxonomy. The precondition states further that the algorithm needs a

* http://www.w3.org/ TR/turtle/
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laparoscopic ontology (in OWL.) and training samples of type AnnotatedSurgery
(i.e. activity triples as introduced earlier with correct phase prediction). The pre-
and postcondition of the SWRL Phase Phase Recognition Linked API are the
same with the exception that the algorithm does not need training samples as
input. Learning-based Phase Recognition Linked API only accepts annotated ac-
tivities where instrument, action and treated structure have instances of concepts
available in the laparoscopic ontology.

The Phase Recognition Linked APIs are registered in the SMW by creating
a page of type Phase Recognition (i.e. an instance of the concept Phase Recog-
nition). The complete set of ontological annotations introduced in section 4.2 is
then available for people interested in reusing or testing the phase interpretation
algorithms and for the execution engine.

The results of the Phase Recognition Linked APIs are directly saved in the
semantic patient data store with ontological annotations about the input activity,
the predicted phase, a time stamp and the used Phase Recognition Linked API.

5.2 Evidence-based Learning for Phase Recognition Linked APIs

As mentioned earlier, we use a weighted majority voting mechanism based on
evidence in the system, i.e. training samples or validated predictions.

The similarity between two activities <instrument, action, treated struc-
ture> is 1 if the instruments, actions and structures are the same and if the
last 3 activities are the same as well. If fewer past activities are the same the
similarity linearly decreases.

All nearest neighbours with a similarity higher than 0,5 are used to compute
the weights for SWRL Phase Recognition Linked API and Learning-based Phase
Recognition Linked API. The final decision is made based on a weighted majority
voting.

5.3 Execution of Phase Recognition Linked APIs

The ontological annotation of the Phase Recognition Linked APIs are first trans-
lated into rules applicable for the Linked Data-Fu engine. Based on the precon-
ditions the engine knows how to initialize the algorithms with a specific ontology
and training samples (the latter are only needed for Learning-based Phase Recog-
nition).

We than formulate additional rules stating that if ontologically annotated
activity events are present then the initialized Phase Recognition Linked APlIs
must be executed. The Linked Data-Fu Linked API then periodically executes
the rule on the prevalent activities. Finally, the Fvidence-based Learning Linked
API is being integrated into the worfklow based on the results of both Learning-
based Phase Recognition Linked API and SWRL Phase Recognition Linked API,
which are available in the semantic patient data store.

Although we tested the scenario with training samples stored in the semantic
patient data store, this set up directly enables the intraoperative use case, in
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which the system is fed sensor data in real-time and directly predicts the current
surgical phase.

5.4 Evaluation of Phase Recognition Scenario

The evaluation of the Phase Recognition Linked APIs and the parallel configu-
ration through both Linked Data-Fu Linked API and Evidence-based Learning
Linked API was conducted in terms of a performance benchmark, correctness
and improvement of the results. We therefore compared the recognized phases
of pancreas resections and measured the time the executions of the Phase Recog-
nition Linked APIs needed, if the predicted phases are equal to local execution
and what impact the Evidence-based Learning Linked API has.

The correctness and time performance of the Phase Recognition Linked APlIs
will show that — as claimed in the introduction — our concepts are eligible for
medical interpretation algorithms. Both SWRL Phase Recognition Linked API
and Learning-based Phase Recognition Linked API were executed automatically
and in parallel with fulfilled preconditions which shows the automatic execution
by using the Linked Data-Fu Linked API (claims (i), (ii)). The Evidence-based
Linked API scores the results of both Phase Recognition Linked APIs by the
available evidence (i.e. annotated surgeries) of the system (claim (iii)).

We cross-validated 5 annotated Pancreas surgeries by using 4 annotated surg-
eries as training samples and 1 annotation as target to predict the phases. As
the Learning-based Phase Recognition algorithm is non-deterministic we had to
average multiple runs.

All Linked APIs (i.e. SWRL Phase Recognition Linked API, Learning-based
Phase Recognition Linked API, Linked Data-Fu Linked API and FEvidence-based
Learning Linked API) were implemented and then hosted on an university in-
tranet.

Correctness The phase recognition algorithms have been developed for local
use thus needed to validate if the results of the remote execution are correct.
The cross validation was conducted on 5 annotated pancreas surgeries, PR; for
1 = 1,...4. The subsequent tables show the rate of true predictions for local
execution and remote execution. We average the results of 5 iterations for each
surgery PR; to account for the non-deterministic behaviour of Learning-based
Phase Recognition Linked API. We round to 4 decimal places.

Algorithm PR1 PR2 PR3 PR4 PR5
Learning-based 0, 9062 0, 6635 0, 9032 0, 4484 0, 6383
SWRL 0,93150,7753 0,89 0,8137 0,7241

Table 1. Local execution of phase recognition algorithms
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Algorithm PR1 PR2PR3 PR4 PR5
Learning-based 0.9056 0.6596 0,9 0,4443 0, 6351
SWRL 0,9315 0,7753 0,89 0,8137 0, 7241

Table 2. Remote execution of Phase Recognition Linked APIs

The results for SWRL Phase Recognition Linked API are exactly the same as
for local execution and the results for Learning-based Phase Recognition Linked
API deviate minimally.

Performance benchmark We evaluated the usefulness of the semantic pipeline
in terms of time performance. The system architecture is distributed and nu-
merous HTTP requests have to be made. We calculated the overhead we are
producing when sending data over the internet to show that our system can be
applied to the intra-operative use case. The following values represent the time
the HTTP POST and GET requests in milliseconds. We, again, averaged the
values over 5 iterations of running through all pancreas surgeries. We rounded
to 1 decimal place.

First, Linked Data-Fu Linked API downloads all necessary data. For SWRL
Phase Recognition Linked API this is only the ontology (99,2 kb) while for
Learning-based Phase Recognition Linked API the training samples have to be
downloaded additionally (always 4 samples with an average aggregated size of
1,5 mb). Ontology, samples and training are the individual initialization steps
for Learning-based Phase Recognition Linked API. Samples depicts the aggre-
gated time for 4 samples to be loaded and initialization initializes the Phase
Recognition Linked APIs. SWRL Phase Recognition Linked API does not pro-
vide a training mechanism. Event measures the time for sending a triple with
instrument, action and structure information, and waiting for the prediction.
The reset operation restarts the Phase Recognition Linked APIs.

Algorithm Download Ontology Training Samples Initialization Event Reset

Learning-based  4083,0 2843,0 9924,0 2349,0 39,7 36,7
SWRL 2030,0 2767,0 0 32420 20,3 26,0

Table 3. Time overhead of Phase Recognition Linked APIs

The download step is the main overhead compared to local execution. Getting
the files takes a few seconds in both cases because Linked Data-Fu Linked API
first iterates through all files of the project in the semantic patient data store. In
a real-time scenario a data source with only necessary contents can be integrated
if needed.
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The initialization for the local version of the learning-based phase recognizer
takes 11516,3ms and for SWRL 4018, 0ms which is a bit faster. Considerable
overhead is only produced for the initialization step which can be made before
the intraoperative scenario is starting. The residual time performances suffice
for a real-time scenario as sending an event takes only 30ms on average.

Improvements of Learning The results of the Fvidence-based Learning Linked
API for ontologically annotated pancreaas surgeries are depicted below com-
pared against both SWRL Phase Recognition Linked API and Learning-based
Phase Recognition Linked APIL

Algorithm PR1 PR2 PR3 PR4 PR5
Learning-based 0.9056 0.6596 0,9 0,4443 0,6351
SWRL 0,93150,7753 0,89 0,8137 0, 7241

Evidence-based 0, 9332 0, 7786 0,9180 0, 7782 0, 7238

Table 4. Results of Fvidence-based Learning Linked API compared to the Phase
Recognition Linked APlIs

The learner generates stable results very close to the optimal Phase Recog-
nition Linked API and sometimes even better.

6 Sequential Execution of Data-driven Image Processing
for TPM Linked APIs

The scenario for processing images consists of a pipeline of seven algorithms
visualized in figure 1, with data-driven decision concerning the normalization
step.

6.1 TPM Image Processing Linked APIs

Each of the algorithms has been provided with a ontological annotations as
explained in [6]. Figure 5 shows the pre- and postconditions for the Brain Mask
Generation Linked API, which takes as input a headscan and two reference
images (a brain atlas mask and a brain atlas image). This processing step outputs
the brain image and brain mask of the headscan.

6.2 Execution of TPM Linked APIs

We applied the Linked Data-Fu engine to the TPM use case in [16] showing that
data-driven procedures decision can be declaratively implemented in combina-
tion with TPM Image Processing Linked APIs.
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PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf -syntax-ns#>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX sp: <http://surgipedia.sfb 25.de/wiki/Special:URIResolver/>
?inputImage rdf: type sp:Category-3AHeadscan. ?brainImage rdf:type sp:Category-3ABrainImage.
?inputImage dc:format "image/nrrd". ?brainImage dc:format "image/nrrd".
?brainAtlasImage rdf:type sp:Category-3ABrainAtlasImage. | ?brainMask rdf:type sp:Category-3ABrainMask.
?brainAtlasImage dc:format "image/mha". ?brainMask dc:format "image/nrrd".

?brainAtlasMask rdf: type sp:Category-3ABrainAtlasMask.
?brainAtlasMask dc:format "image/mha".

Fig. 5. Pre- and postconditions for Brain Mask Generation Linked API [16]

As the TPM Image Processing Linked APIs have been registered in the SMW
with all their ontological annotations, we could translate the preconditions into
rules for the Linked Data-Fu engine. We, again, stipulated rules for gathering all
projects, patients and files of the semantic patient data store. New rules based
on the preconditions of the TPM Image Processing Linked A PIs have then been
created.

As depicted in the TPM scenario overview (see figure 1) headscan of different
stages of the patient’s treatment process are available in the semantic patient
data store. They have been situated in central data taxonomy and ontologically
annotated with type Headscan. An atlas image and and atlas mark of the brain
are both available in the semantic patient data store, which enables the Brain
Mask Generation Linked API to be called by the Linked Data-Fu Linked API for
every annotated headscan. A brain image and a brain mask are being produced
and fed back to the semantic patient data store with adequate ontological anno-
tations. Based on the enriched ontologically annotated data for the patient new
Medical Linked APIs might be executable. The preconditions for the Batched
Folder Registration are fulfilled and all brain images are used to register all im-
ages together in one step. The workflow proceeds and is entirely executed on a
declarative basis with no globally defined procedure.

The main difference to the phase recognition scenario is the lack of real-time
requirements, since newly annotated data is automatically processed after a fixed
polling time set for the Linked Data-Fu Linked APIL

6.3 Evaluation of TPM Scenario

As depicted earlier, we did not assume a real-time scenario to be necessary. The
sequential data-driven pipeline has thus been evaluated in terms of correctness of
the respective TPM Image Processing Linked APIs in [6] and correct execution
of data~driven execution of declarative workflows in [16]. This extends the capa-
bilities of parallel configurations with the automatic composition and execution
of complex sequential workflows where no procedures have to be hand-crafted
(claim (i)).

The evaluations concerning the duration of execution conducted in [6] showed
a dependency on the internet bandwidth. The impact of the delays compared
to local execution do not considerably impact our scenario, as the requirements
are not that time-bound. Depending on the polling time of the Linked Data-Fu
Linked API (which was set to five minutes) the workflow is started within that
time frame. The TPM Image Processing Linked APIs then create the correct
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TPM after 12 minutes on average and make the results available in the semantic
patient data store.

7 Discussions and Lessons Learned

The here introduced configurable system is able to deal with both sequential
and parallel scenarios. The ontological modelling of the interpretation algorithms
and their data is shown to be sufficient for these configurations to be created.
However, with more medical Linked APIs being developed and added to the
configuration system, and limited central capabilities of adapting all ontological
annotations among each other, not all sequential and parallel possibilities might
be leveraged. The learning component (or Evidence-based Learning Linked API)
is being executed based on multiple results created for a task but does prerequi-
site the same ontological annotations to be used. In addition, complex workflows
(such as computing a TPM with multiple TPM Image Processing Linked APIs)
are also only constructed if pre- and postconditions are exact matches. If another
image processing pipelines with different Linked APIs is added to the system, it
will be automatically executed but this maybe not be in combination with the
existing TPM Image Processing Linked APIs because the ontological annota-
tions might not match perfectly. This can be easily solved by adding a reasoning
component to the system, which creates matches between different ontological
annotations.

The learning component currently gradually generates more stable results
with more Medical Linked APIs. Please note that ensembles or interpretation al-
gorithms (e.g. classifiers) generally do not assume to provide better results than
the single optimal algorithm. As there are numerous approaches, it might be
interesting to use multiple learning techniques and choose the optimal combina-
tion there. In addition, training the Medical Linked APIs adaptively (similarly
to boosting approaches) might optimize the results even more.

8 Conclusion

We propose a configuration system able to automatically create sequential and
parallel workflows based on ontological annotations for algorithms. The system
enables automatic execution of new algorithms, if they are made available as
Medical Linked APIs and are registered in a central semantic repository (we
use a SMW) through a rule-based engine. Learning components can be added
to the system to optimize the results, when numerous Medical Linked APIs are
available for the same task. We applied our approach to both Phase Recogni-
tion and TPM Image Processing algorithms to show the system capabilities.
Our evaluation results show that the Medical Linked APIs are providing the
correct results as they did for local execution and run in a reasonable amount
of time. The Linked Data-Fu Linked API automatically executes both Phase
Recognition Linked APIs and TPM Image Processing Linked APIs when neces-
sary data sources are available and ontologically annotated (claims (i), (ii)). The
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Evidence-based Learning Linked API provides stable results when one algorithm
performs very poorly and beats choosing the optimal algorithm if both evidence
and similarity metric work well (claim (iii)).
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