

Computing the Similarity of Entities using HANA Graph and Linked Data

Benedikt Kämpgen, Christof Bornhoevd, Horst Werner SAP

Institute of Applied Informatics and Formal Description Methods (AIFB)

Motivation

Motivation (2)

Motivation (3)

- More and more data sources become available that are potentially interesting for a physician:
- New data sources: Patienten LinkedCT, MeSH, UMLS -Studien
- One needs more information about patients.
- Semantic Clinical Data Warehouse

B. Kämpgen et al., Global Cube

- Another example is the increasing importance of genotype information
- Another example are logics based ontologies that may confirm or disagree with female prostate cancer
- Prostate cancer confirmed by, not confirmed by...

Motivation (4)

Add to my archive

5

genitalia.

cs and (AIFB)

The Journal

Problem

- How to access?
 - Different data formats.
 - Semi-structured data.
- How to integrate and query?
 - No explicit links between entities.
 - Ad-hoc queries.
 - Graph-analysis queries.

B. Kämpgen et al., Global Cube

Scenario

- Similarity between entities such as genes, drugs, diseases.
- Why important?
 - Similarity as building block for pattern mining for relationships between entities.
 - E.g., drug relationships depend on similarity of the genes their target.
 - ...

Palma, G., Vidal, M.-E., Haag, E., Raschid, L., & Thor, A. (2007). Measuring Relatedness Between Scientific Entities in Annotation Datasets. *Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics - BCB'13*, 367–376. doi:10.1145/2506583.2506651

Scenario - AnnSim

Similarity (1-d,)

- General data sources
 - E.g., genes, annotations, ontology
- Graph-analysis algorithms

Related Work

- Palma et al.
 - Hard-coded data sources
 - All pure C++

B. Kämpgen et al., Global Cube

Approach

HANA-LD-AnnSim (HLA)

- Input: List of entities
- Output: List of similarities

Benefits of HANA Graph

Benefits of Linked Data

Evaluation

- Correctness
- Performance
- Flexibility

Correctness

MSE Wikipedia definition

Correctness (2)

Mean Squared Error $(MSE = \frac{1}{n}\sum_{i=1}^{n}(\hat{Y}_i - Y_i)^2)$

- HLA AnnSim 0.09325386
- AnnSim SeqSim 0.356347132
- HLA SeqSim 0.18890245
- Differences explained
 - AnnSim/HLA only using annotation information.
 - SeqSim Gold Standard based on DNA sequence.
 - HLA uses newer Gene Ontology than AnnSim.

2014

Performance – Setup

	HLA	AnnSim
Client Workstation	Ubuntu 14.04 VM on W7 Intel Core i5-3360M CPU 2.80GHz, 16 GB RAM	Ubuntu 14.04 VM on W7 Intel Core i5-3360M CPU 2.80GHz, 16 GB RAM
HANA Instance	SUSE Linux Enterprise Server 11.1 XXX	-
Triples	7,337,447	-
Size of data	537 MB	2.79 MB + 670 B
Vertices	601,519	39,209
Edges	1,658,322	74,123
Genes	20 (1-aaap)	20 (1-aaap)

Performance – Results

	HLA	AnnSim
Collect RDF graph	*641s	-
Map RDF to HANA	565s	-
Import graph	60s	-
Compute similarities	8,212s	408s
-> GEM Ask Queries	?	-
-> GEM Update Queries	?	-
-> Get Distances	?	-
-> Program Logic	?	408s

*Estimation with 6.7 Mbps

http://techcrunch.com/2012/08/09/akamai-global-average-broadband-speeds-up-by-25-u-s-up-29-to-6-7-mbps/

Performance Explained

	HLA	AnnSim
Ask for all annotating concepts of entity	Given (0s)	WIPE Traversal Query
Ask for all ancestors of a concept	Depth first search through graph	WIPE Traversal Query
Ask for depth of all concepts	Topological sort of vertices in graph	WIPE Query for root vertices; breadth first from root vertices.
Ask for lowest-common- ancestor of two concepts	Compare ancestors and their depths.	Compare ancestors and their depths.
Shortest path from Ica to concept.	Depth first search through graph from Ica.	Take difference between depth of concept and lca.*
Shortest path from root to concept.	Depth first search from root.	Depth of concept + 1.*
Compute d_tax	Program logic formula.	Program logic formula.
Compute AnnSim	Program logic formula.	Program logic formula.

*heuristic

Flexibility

- We would probably need to change the path from an entity to its concepts (we could also make it more general)
 - Can we show that with anything annotated with something? (drugs were annotated by experts; we could translate them to RDF). Anything linked with NCIT terms?

Lessons Learned

Conclusions & Open Work

- Evaluating AnnSim on other entity types.
- Improving AnnSim to better similarity.
 - Not only certain concept annotations.
 - Not only concept annotations.
- Extending AnnSim to other relationship types.