
Querying the Global Cube: Integration of
Multidimensional Datasets from the Web

Benedikt Kämpgen1, Steffen Stadtmüller1, and Andreas Harth1

Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany,
{benedikt.kaempgen,steffen.stadtmueller,harth}@kit.edu

Abstract. National statistical indicators such as the Gross Domestic
Product per Capita are published on the Web by various organisations
such as Eurostat, the World Bank and the International Monetary Fund.
Uniform access to such statistics will allow for elaborate analysis and vi-
sualisations. Though many datasets are also available as Linked Data,
heterogeneities remain since publishers use several identifiers for com-
mon dimensions and differing levels of detail, units, and formulas. For
queries over the Global Cube, i.e., the integration of available datasets
modelled in the RDF Data Cube Vocabulary, we extend the well-known
Drill-Across operation over data cubes to consider implicit overlaps be-
tween datasets in Linked Data. To evaluate more complex mappings we
define the Convert-Cube operation over values from a single dataset.
We generalise the two operations for arbitrary combinations of multiple
datasets with the Merge-Cubes operation and show the feasibility of the
analytical operations for integrating government statistics.

1 Introduction

Given the Open Data policy of governments and intergovernmental organisa-
tions, citizens can access many statistical datasets online. For example, one can
find the Gross Domestic Product of countries per year from Eurostat, the World
Bank and the International Monetary Fund. Integrating such multidimensional
datasets will allow for more complete answers and detailed comparisons of indi-
cators. For example, the GDP of a country from one and the population from
another dataset allow analysts to compute the GDP per Capita and to cross-
check these derived values with values from other publishers.

Towards providing uniform access, many datasets are also made available
– directly or by third-parties – as Linked Data reusing the RDF Data Cube
Vocabulary (QB), the quasi-standard for publishing multidimensional datasets.
Although analytical operations over QB datasets have been defined [5] and in-
dicators from two datasets can be compared in visualisations [3] integration is
still difficult [13] if datasets:

– contextualise their indicators with different dimensions, e.g., “geo-location”,
“time” or “gender”,

– use different names for the same dimensions, e.g., “geo” and “location” or
dimension values, e.g., “DE” and “Germany”,

2

– provide different levels of detail, e.g., regional or national level,
– use different units of measurement, e.g., “Million Euro” and “Euro”,
– and publish datasets derived from other datasets, e.g., “GDP per Capita”

computed via “Nominal GDP” divided by “Population”.

Defining a global schema over heterogeneous datasets published as Linked
Data is challenging since related work has so far concentrated on relational set-
tings [2] with few sources that are centrally integrated. Relationships between
different datasets are often buried in informal descriptions, and the routines to
resolve semantic conflicts are provided in code or external background informa-
tion [10]. After introducing preliminaries and a motivating scenario in Section 2
and before describing related work in Section 6, and concluding with Section 7,
we provide the following contributions:

– We define the Global Cube using the Drill-Across operation [6] over datasets
published as Linked Data. We describe how to derive previously unknown
values in the Global Cube using OWL axioms as well as conversion [10] and
merging correspondences [2] (Section 3).

– We analyse the complexity of generating the Global Cube (Section 4) and
show the feasibility of our approach for government statistics (Section 5).

2 Preliminaries and Government Statistics Scenario

We use the common Multidimensional Data Model (MDM) of Data Cubes as a
conceptualisation of QB datasets since we then can apply analytical operations
such as Slice and Dice [5, 7]: An MDM consists of data cubes (instances of
qb:DataSet) with facts (instances of qb:Observation). Every data cube defines
measures (instances of qb:MeasureProperty) and dimensions (qb:Dimension-
Property). Every fact in the data cube has a value for each of the measures
and dimensions. The values of the measures are functionally dependent on the
values of the dimensions, i.e., for every possible combination of dimension values,
only one fact can be contained in the data cube. Members are the possible
dimension values and may be grouped into levels along hierarchies (e.g., instances
of qb:CodeList).

For instance, see Table 1 for an overview of data cubes from existing datasets
to which an integration system should provide access. The table shows in the
rows all data cubes and in the columns all their dimensions. The cells give
example members for a dimension, “-” if the dimension is not and “. . . ” if the
dimension may be used.

For readability reasons, we describe URIs with namespaces1, slightly abusing
the W3C CURIE syntax for expressing compact URIs. Relative URIs such as
:DE are defined by the data source in the respective context.

Since most publishers – also of our scenario data cubes – follow the practice
of using an unspecific measure sdmx-measure:obsValue and a dimension indi-
cating the measured variable, e.g., estatwrap:indic na and gesis:variable,

1 Use http://prefix.cc/ to look up prefix definition.

3

Table 1. Overview of data cubes in rows with their dimensions in columns and dimen-
sion members available in the scenario in cells.

Cube \Dimension estat-
wrap:geo

estatwrap-
:unit

dcterms:
date

gesis:
geo

gesis:
variable

estatwrap-
:indic na

estat-
wrap:sex

estat-
wrap:age

eurostat:id/
tec00115#ds
(GDP Growth)

:DE. . . :PCH PRE. . .2001. . . - - - - -

allbus:
ZA4570v590.rdf#ds
(Unemploy. Fear)

- - 2004. . . :00. . . :v590 1. . .- - -

eurostat:id/
tsdcc310#ds. . .
(EU 2020 Indicator)

:DE. 2001. . . - -

eurostat:id/
nama aux gph#ds
(GDP Per Capita)

:DE. . . :EUR HAB. . .2001. . . - - :NGDPH. . . - -

eurostat:id/
nama gdp c#ds
(GDP Components)

:DE. . . :MIO EUR. . .2001. . . - - :B1G,
:D21 M-
D31

- -

eurostat:id/
demo pjan#ds (Popu-
lation)

:DE. . . - 2001. . . - - - :F. . . :Y18. . .

and since cubes with multiple measures can be transformed to this form by in-
troducing a new measure dimension, for the remainder of this paper we assume
data cubes to have only one general measure, sdmx-measure:obsValue.

Every multidimensional element is published by a data source identified by
the namespace. The eurostat namespace2 makes available thousands of data
cubes with indicators about European countries from Eurostat. For instance, the
GDP Growth with the growth rate of the gross domestic product of all Euro-
pean countries per year, with the unit “percentage change on previous period”
(:PCH PRE) and for the geo dimension denoting Germany as :DE. Also, Eurostat
provides citizens with EU 2020 Indicators, e.g., the energy dependence, produc-
tivity, and intensity as well as the greenhouse gas emission. Table 1 gives an
example of one of those datasets; every EU 2020 Indicator cube exhibits the
geo and time dimension and can contain other dimensions from the same data
source. GDP Components provides granular values from which other indicators
can be computed. For instance, the Nominal GDP (GDP at market prices) can
be computed from adding the “Total gross value added” (estatwrap:indic na

of :B1G) and “Taxes less subsidies on products” (:D21 M D31); similarly, the
Nominal GDP divided by the Population should result in the GDP Per Capita.

The allbus namespace3 provides information about “attitudes, behaviour
and social structure in Germany” from the Cumulated German General So-
cial Survey (ALLBUS). Among others, we can retrieve a survey where Ger-
man employees were asked about their fear of becoming unemployed (Unem-
ploy. Fear). The measure describes the number of answers for a given question.
The allbus:variable dimension denotes the type of answers given “No fear”,

2 http://estatwrap.ontologycentral.com/
3 http://lod.gesis.org/lodpilot/ALLBUS/

4

“Yes, of becoming unemployed”, “Yes, of having to change employer”4. The :geo
dimension describes the participants’ country, e.g., Germany is denoted via :00.

An analytical query over a data cube can be described as a nested set
of OLAP operations and executed using SPARQL over QB datasets [6, 5, 7]:
Projection selects measures from a data cube; Dice filters for facts with cer-
tain members as dimension values; Slice sets dimensions to an implicit ALL
member so that they can be aggregated over and removed; and Roll-Up aggre-
gates dimension members to a higher level of the dimension hierarchy. Measures
are aggregated using an aggregation function, e.g., described by the measure or
by the user in the query [5]. We now describe three example queries that citizens
may want to pose over the available datasets.

Unemployment Fear and GDP Growth (UNEMPLOY): Citizens
want to compare the indicator about unemployment fear with the “GDP Growth”
over time for Germany to get insights about the relation between GDP and em-
ployees’ perceived situation.

Comparing EU 2020 - Indicators (EU2020): Here, citizens want to
aggregate and compare important metrics about European countries by average
for all countries and to show the aggregated numbers per year, so that trends of
important indicators for European countries become visible.

GDP per Capita from Different Sources (GDP CAP): Here, citizens
may want to confirm that the GDP per Capita per country and year provided
by different institutions and derived from different datasets is equal to increase
their trust in Open Data.

3 Building the Global Cube

In this section, we introduce an integrated view over data cubes, the Global
Cube, and show how to increase its size using mappings between data cubes.

We describe the data of a cube ds ∈ DataCube as a relation ds(D1, D2,

..., Dn, M) with dimension(ds) the set of dimensions used by a cube and
M the unspecific measure sdmx-measure:obsValue. The relation contains all
possible dimension-member combinations on a specific level of detail, possibly
with M an empty value such as “null” or “” We use functional datalog for
describing rules about relations.

Definition 1 defines Drill-Across, the basic operation for integrating cubes.

Definition 1 (Drill-Across). Given two data cubes ds1(D11, D12, ..., D1n,

M1) and ds2(D21, D22, ..., D2n, M2), we define Drill-Across: DataCube

× DataCube → DataCube [6] and Drill-Across(ds1, ds2) = ds3 as follows:
If dimension(ds1) != dimension(ds2) then ds3(D31, ..., D3n, M3), with
dimension(ds3) = dimension(ds1) ∪ dimension(ds1) empty, i.e., its rela-
tion contains no tuples; else then D1i = D2i, 1 <= i <= n and the following
rule holds: ds3(D1, ..., Dn, M) :- ds1(D1, ..., Dn, M1), ds2(D1, ...,

Dn, M2), M = f(M1, M2), with f(M1, M2) defined as follows: If (M1 != null

4 allbus:variable.rdf#v590 1 to allbus:variable.rdf#v590 3

5

AND M2 == null) then M1; else if (M1 == null AND M2 != null) then M2; else
if (M1 == M2) then M1; else “Integrity Constraint Violation”.

As stated in other work [9, 1], Drill-Across requires as input two data cubes
with the same dimensions and for the resulting cube computes an Outer Join of
facts on the dimensions. Different from existing work, we consider the more gen-
eral case where the same measure may be used by the input data cubes; in case
two facts from the two cubes have identical dimension-member combinations and
different values for the measures, the resulting cube violates the constraint to
not have different measure values for the same dimension-member combination
(IC-12 in QB specification; can also be denoted by ‘‘integrity constraint

violation’’ :- ds(D1, ..., Dn, M1), ds(D1, ..., Dn, M2), M1 != M2).
Use-case-specific conflict resolution is then possible.

Based on Drill-Across, Definition 2 defines the Global Cube.

Definition 2 (Global Cube). Given a set of available cubes {ds1, ..., dsn}
with dimension the set of all dimensions of these available data cubes, we define
the Global Cube globalcube(D1, ..., Dn, M) with dimension(globalcube)

= dimension. The Global Cube is defined in terms of the available cubes; given
cube dsi(Di1, ..., Dik, Mi), the following rule holds: globalcube(all, ...,

Di1, ..., Dik, all ..., Mi) :- dsi(Di1, ..., Dik, Mi). We denote with
all the ALL member [8] aggregating over all possible values in the dimension.
Thus, dimensions not used in available cubes are regarded as sliced with respect
to the Global Cube. An OLAP query Q over the Global Cube with S sliced dimen-
sions then can be answered by:
Q(globalcube) = Drill-Acrossds∈DataCube,dimension\S⊆dimension(ds) Q(ds).
Since Drill-Across is commutative, the Global Cubes does not depend on the order
of Drill-Across operations.

For instance, we can define a Global Cube by the data cubes Unemploy. Fear
and GDP Growth for our UNEMPLOY query. We use a function-like syntax to
describe that cubes are modified along OLAP operations parametrised with ele-
ments from the MDM to eventually result in a cube to be displayed to the user,
e.g., in a pivot table: Slice(Dice(Projection(GlobalCube, {sdmx-measure:-
obsValue qb4o:avg}), estatwrap:geo, { eurostat-geo:DE }), {estatwr-
ap:unit, gesis:variable}). Here, the unit and variable dimensions are sliced
and the average of measures over all years for Germany requested. We can use
a nested set of analytical operations as in Listing 1.1 to describe the query in
terms of the two available cubes.

Listing 1.1. Nested set of analytical operations for UNEMPLOY query

1 Drill -Across(

2 Slice(Dice(Projection(eurostat:id/tec00115#ds ,

3 {sdmx -measure:obsValue qb4o:avg}),

4 estatwrap:geo , {eurostat -geo:DE}),

5 {estatwrap:unit , gesis:variable }),

6 Slice(Dice(Projection(allbus:ZA4570v590.rdf#ds ,

7 {sdmx -measure:obsValue qb4o:avg}),

6

8 estatwrap:geo , {eurostat -geo:DE}),

9 {estatwrap:unit , gesis:variable })

10)

However, this query only returns results if Unemploy. Fear and GDP Growth
– despite their heterogeneous structures according to Table 1 – exhibit a di-
mension estatwrap:geo and a member eurostat-geo:DE. Therefore, in the
following, we present two possibilities to reduce heterogeneities between data
cubes to increase the number of answers returned for queries over the Global
Cube: 1) Slicing of dimensions and mappings between shared dimensions and
members, and 2) converting and merging of data cubes.

3.1 Drill-Across with Shared Dimension Mappings in Linked Data

To execute the analytical query given in Listing 1.1, we need to evaluate the
query plan of a nested set of OLAP operations over QB datasets.

Every sub-query-plan of OLAP operations not including the Drill-Across op-
eration we can evaluate using the OLAP-to-SPARQL algorithm [8] where every
analytical operation is evaluated using parts of a SPARQL query. Similarly, given
the RDF describing two input cubes re-using QB and sharing all their dimen-
sions, we can evaluate the Drill-Across operation using SPARQL. See Listing 1.2
for an example SPARQL query for our previous OLAP query (Listing 1.1).

Listing 1.2. SPARQL for UNEMPLOY Drill-Across query

1 select ?geo0 ?date0 f(avg(? obsValue1), avg(? obsValue2))

2 where {

3 OPTIONAL { ?obs1 qb:dataSet eurostat:id/tec00115#ds;

4 estatwrap:geo ?geo0;

5 dcterms:date ?date0;

6 sdmx -measure:obsValue ?obsValue1 .

7 FILTER (?geo0 = eurostat -geo:DE) }

8 OPTIONAL { ?obs2 qb:dataSet allbus:ZA4570v590.rdf#ds;

9 estatwrap:geo ?geo0;

10 dcterms:date ?date0;

11 sdmx -measure:obsValue ?obsValue2 .

12 FILTER (?geo0 = eurostat -geo:DE)

13 }} group by ?geo0 ?date0

Here, for each of the two input cubes, we query for observations linked via
qb:dataSet to the respective QB dataset URI (line 3 and 8); the observations
from both datasets we join on the values of their dimension properties (4,5 and
9,10) and bind the values of their measures to separate variables (6,11) and
combine them with f(M1, M2) with f resolving possible integrity constraint
violations (1)5. Various optimisations such as materialisation [9] are possible
but not the topic of this paper. The integration of more than two data cubes is
possible by chaining Drill-Across operations.

5 In this example, no conflict resolution would be done but the values of the two cubes
displayed to the user, e.g., using the concat function.

7

Drill-Across requires data cubes to use the same dimensions and members.
Dimensions and members are shared if the same URIs or literal values are used;
for instance, :dim is shared by :ds1 and :ds2 if the following patterns bind:

1 :ds1 qb:structure/qb:component/qb:dimension :dim.

2 :ds2 qb:structure/qb:component/qb:dimension :dim.

For instance, since GDP Growth and Unemploy. Fear both use dcterms:date
and literal values for years such as 2006, drill-across over the time dimension can
directly be done. However, different RDF terms may be used and only implicitly
represent shared dimensions and members. For instance, the GDP Growth and
Unemployment Fear cubes use different geo dimensions, estatwrap:geo and
gesis:geo, as well as different members representing Germany, :DE and :00.

To allow the implicit definition of shared dimensions and members, we assume
that the standard OWL semantics hold. OWL axioms can either be loaded from
existing Linked Data or manually added to the system. There are different ways
to indicate shared dimensions and members in Linked Data, e.g., owl:sameAs,
owl:equivalentProperty, and rdfs:subPropertyOf.

For instance, GDP Growth and Unemploy. Fear share estatwrap:geo and
gesis:geo if the dimensions are linked via owl:equivalentProperty; after
also stating eurostat-geo:DE owl:sameAs gesis-geo:00, the query from List-
ing 1.1 will bring together GDP Growth and Unemploy. Fear for Germany.

3.2 Conversion and Merging Correspondences Between Data Cubes
We now define more complex mappings between data cubes. A Conversion Corre-
spondence according to Definition 3 describes relationships between two cubes in
terms of their dimension-member combinations (inputmember, outputmember

∈ 2Dimension×Member), i.e., how facts with certain members on dimensions in an
inputcube can be converted to facts with other members on such dimensions in
an outputcube. The actual conversion is described using a conversion function
f ∈ Function that describes how the value of the measure of the outputcube

can be computed by the value of the measure of the inputcube and that may
be implemented in any programming language [10].

Definition 3 (Conversion Correspondence). We define a Conversion Corre-
spondence adapted from correspondences over relational data [2] and conversion
functions [10] as follows: ConversionCorrespondence = {(inputmembers, out-

putmembers, f) ∈ 2Dimension×Member×2Dimension×Member× Function } with
Function: String → String. Given two data cubes ds1(D11, ..., D1n, M1)

and ds2(D21, ..., D2n, M2) with D1i = D2i, 1 <= i <= n. A conversion
correspondence cc between the cubes, cc(ds1) = ds2, holds if the following rule
holds: ds2(D21, ..., D2n, M2) :- ds1(D11, ..., D1n, M1), inputmember

∈ inputmembers hold for ds1, outputmember ∈ outputmembers hold for

ds2, D1i ∈ dimension(ds1) \ inputmembers : D1i = D2i, f(M1) = M2.

We define a Convert-Cube operation with Convert-Cube: DataCube × Con-

versionCorrespondence → DataCube to denote the application of a conver-
sion correspondence to an input data cube to result in a new derived cube

8

with the same structure as the input cube: Convert-Cube(ds1, cc) = ds2 <=>

cc(ds1) = ds2.

For instance, the relationship between the member “Million Euro” and “Euro”
in Eurostat can be described with the following correspondence: MIO2EUR =

({(estatwrap:unit, eurostat-unit:MIO EUR)}, {(estatwrap:unit, euro-

stat-unit:EUR)}, "f(x) = 1, 000, 000·x") The application of MIO2EUR over the
GDP Components data cube is denoted by Convert-Cube(estatwrap:id/na-

ma gdp c#ds, MIO2EUR) and returns a new data cube containing values with
unit “Euro”. To allow the consecutive application of conversion correspondences
to a data cube in a nested set of Convert-Cube operations, each Convert-Cube
operation we evaluate using a SPARQL 1.1 CONSTRUCT query generating the
RDF of the derived cube to which in turn another Convert-Cube operation can
be applied. Listing 1.3 shows the SPARQL query for our example.

Listing 1.3. Evaluation of MIO2EUR over GDP Components data cube.

1 CONSTRUCT {

2 ds12c44:ds qb:structure ?dsd .

3 _:outputobs qb:dataSet ds12c44:ds;

4 estatwrap:unit eurostat -unit:EUR;

5 gesis:geo ?gesisgeo;

6 estatwrap:geo ?estatwrapgeo;

7 estatwrap:indic_na ?estatwrapindicna;

8 dcterms:date ?dctermsdate;

9 sdmx -measure:obsValue ?outputvalue1 .

10 } where { {

11 select ?dsd ((1000000 * ?inputvalue1) as ?outputvalue1)

?gesisgeo ?estatwrapgeo ?dctermsdate ?estatwrapindicna

?inputvalue1

12 where {

13 estatwrap:id/nama_gdp_c#ds qb:structure ?dsd .

14 ?inputobs qb:dataSet estatwrap:id/nama_gdp_c#ds;

15 estatwrap:unit eurostat -unit:MIO_EUR;

16 gesis:geo ?gesisgeo;

17 estatwrap:geo ?estatwrapgeo;

18 estatwrap:indic_na ?estatwrapindicna;

19 dcterms:date ?dctermsdate;

20 sdmx -measure:obsValue ?inputvalue1 .

21 } } }

The SPARQL CONSTRUCT query can be divided by triple patterns in
the body (line 13 to 20 in Listing 1.3) that provide bindings for triple pat-
terns in the head (line 2 to 9) that in turn define the constructed triples.
Since in our implementation no functions are possible in triple patterns (see
1000000 * ?inputvalue1), we surround body triple patterns with a SPARQL
SELECT query. The query generates for every fact in the input cube with unit
eurostat-unit:MIO EUR a new fact with unit eurostat-unit:EUR in an out-
put cube with the same structure (dimensions and measures); the value of the
(generic) measure is 1, 000, 000 times the value of the input cube’s measure.

9

Along this example, we explain how a cube and a conversion correspondence as
input to a Convert-Cube operation can be translated to the respective SPARQL
CONSTRUCT query. The body triple patterns are created in the following steps:

1. Dataset Triples: We bind the data structure definition and observations
from the dataset URI of the input cube (line 13 and 14).

2. Inputmembers Triples: For each dimension-member combination in input-

members, we add a respective triple pattern (15).
3. Dimensions Triples: For each dimension from the input cube which is not

contained in inputmembers, we bind from the observation the value for the
dimension URI to a variable derived from the dimension URI to refer back to
it in the head triple patterns later (16 to 19). Since the data cubes share their
geo dimensions, there are triple patterns for gesis:geo and estatwrap:geo.

4. Measures Triples: For each measure in inputcube, we bind from the ob-
servation the value to a variable that is unique per measure for referral in
other parts of the rule (20).

5. Function Triples: For each measure in inputcube, we bind a variable for
the derived dataset’s measure with an expression for function f with the
input variable of f replaced by the respective measure variable (11).

Similarly, we create the triple patterns in the head:

1. Dataset Triples: We introduce a URI for the derived output dataset (e.g.,
by a combination of unique IDs for the original dataset and the conversion
correspondence); we add the data structure definition of the input dataset to
the output dataset (line 1); we add new observations to the output dataset
using a blank node (line 2)

2. Outputmembers Triples: For each dimension-member combination in
outputmembers, we add a respective triple pattern (line 4).

3. Dimension Triples: For each dimension from the input cube which is not
contained in outputmembers, we add to the new observation the dimension
values of the observation in the body (line 5 to 8).

4. Measure Triples: For each measure in inputcube, we assign to the respec-
tive measure in the derived observation the variable describing the converted
value from the body (9)

The Dimension Triples make sure that the derived data cube has the same
dimensions as the input cube and copy all dimension values not touched by the
conversion correspondence. For that, contrary to the Open-World assumption
in Linked Data, we have to assume all dimensions stated by the data structure
definition of the input dataset to be known.

The SPARQL query is evaluated over the RDF representing the data cube
to generate the derived cube. To answer a query over the Global Cube, we
need to take into account all derived data cubes, including those derived by
nested Convert-Cube operations. Given an OLAP query with nested Convert-
Cube operations, any Convert-Cube operation is evaluated using one evaluation
of the respective SPARQL CONSTRUCT query over the input data cube’s RDF.

10

Iteratively, the RDF of the input data cube may first need to be derived by
the evaluation of another Convert-Cube operation. In the next section, we will
describe an analysis of the number of derived data cubes in the Global Cube.

Conversion correspondences we can extend to merging correspondences to
combine values from two cubes. A merging correspondence according to Defini-
tion 4 describes how facts with certain members on dimensions in two data cubes
can be merged to facts in a third data cube with members on such dimensions
and with the same structure as the first input cube.

Definition 4 (Merging Correspondence). We define MergingCorrespondence

= {(inputmembers1, inputmembers2, outputmembers, f) ∈
2Dimension×Member×2Dimension×Member×2Dimension×Member× Function } with
Function: String × String → String. Given three data cubes ds1(D11,D12
..., D1n, M1), ds2(D21, ..., D2n, M2), and ds3(D31, ..., D3n, M3) with
D1i = D3i, 1 <= i <= n. A merging correspondence mc between the three cubes,
mc(ds1, ds2) = ds3 holds if the following rule holds: ds3(D31, ..., D3n,

M3) :- ds1(D11, ..., D1n, M1), ds2(D21, ..., D2n, M2), inputmember1

∈ inputmembers1 hold for ds1, inputmember2 ∈ inputmembers2 hold for

ds2, outputmember ∈ outputmembers hold for ds3, D1i ∈ dimension(ds1)

\ inputmembers1 : D1i = D3i, f(M1, M2) = M3.

We define a Merge-Cubes operation with Merge-Cubes: DataCube × Da-

taCube × MergingCorrespondence → DataCube to denote the application of
a merging correspondence to two input data cubes to result in a derived cube.

The following example computes the Nominal Gross Domestic Product (NG-
DP) from the sum of two GDP component indicators: COMPUTE GDP = ({(estat-
wrap:indic na, eurostat-indic na:B1G)}, {(estatwrap:indic na, eurost-

at-indic na:D21 M D31)}, {(estatwrap:indic na, eurostat-indic na:NG-

DP)}, "f(x1, x2) = x1 + x2"). And the following example computes the GDP
per Capita in Euro per Inhabitant from the Nominal GDP and the Population:
COMP GDP CAP = ({(estatwrap:indic na, eurostat-indic na:NGDP), (est-

atwrap:unit, eurostat-unit:EUR)}, {(estatwrap:sex, eurostat-sex:T),

(estatwrap:age, estatwrap-age:TOTAL)}, {(eurostat:indic na, eurost-

at-indic na:NGDPH), (eurostat:unit, eurostat-unit:EUR HAB)},"f(x1, x2)
= x1/x2"). Here, from the second input cube only facts are selected that contain
measures for all genders and age groups, assuming they describe the population.
The algorithm to evaluate Convert-Cube using a SPARQL CONSTRUCT query
can be extended to the Merge-Cubes operation.

4 Analysis of the Global Cube

Given a set of data cubes and conversion and merging correspondences, an al-
gorithm to generate all derived data cubes to answer a query over the Global
Cube may not terminate since correspondences can be infinitely nested.

If we require that the same correspondence is not applied repeatedly we can
give an upper bound estimation of the number of (derived) cubes based on ds
datasets and mc merging and conversion correspondences: noderivedds(ds,mc).

11

For that, we define a recursive function noc(dp, ds,mc) that distinguishes the
depth dp of a nested set of correspondence applications with noc(0, ds,mc) = ds,
noc(dp, ds,mc) = mc2 ∗noc(dp−1, ds,mc−1)2 +2∗mc2 ∗

∑
0<=i<dp−1 noc(dp−

1, ds,mc − 1) ∗ noc(i, ds,mc − 1). In the recursion, we need to consider the
ordering of inputs to the merging, i.e., the consecutive application of merging
correspondences in the left, right and both inputs. Then, noderivedds(ds,mc) =
noc(0, ds,mc) + noc(1, ds,mc) + . . . + noc(mc, ds,mc).

As an example, for our GDP CAP query we assume the GDP Per Capita, the
GDP Components, and the Population as data cubes, MIO2EUR as conversion, and
COMP GDP and COMP GDP CAP as merging correspondences. The maximum number
of (derived) datasets is given by: noderivedds(3, 3) = noc(0, 3, 3) +noc(1, 3, 3) +
noc(2, 3, 3) + noc(3, 3, 3) = 3 + 81 + 13, 608 + 3, 003, 480 = 3, 017, 172.

However, most derived data cubes are empty, e.g., MIO2EUR(GDP Per Capita)

since GDP Per Capita does not contain values with unit “Million Euro”. There-
fore, if we require in a nested application of correspondences that outputmembers
of the first correspondence fit inputmembers of the second correspondence, the
number of derived datasets in many cases will be reduced.

To generate all possible derived data cubes in our GDP CAP query, we
use a functional Datalog program, where we define the datasets using relation
dataset(Ds), dimensions using dimension(Ds, Dim) and dimension-member
combinations using dimensionmember(Ds, Dim, Mem); also, we define every
conversion and merging correspondence using four rules for 1) generating the
dataset, 2) copying over the dimensions, 3) copying over the dimension-members,
and 4) setting the new dimension member. For instance, rule 1) for MIO2EUR

is as follows: dataset(mio2eur(X)) :- dataset(X), dimension(X,unit), (

\+ dimensionmember(X,unit,Z); dimensionmember(X,unit,mioeur)).

Running the program in XSB Prolog, we now only get 54 derived datasets –
including a computation of the GDP per Capita via comp gdp per cap(comp gdp-

(mio2eur(gdpcomponents),mio2eur(gdpcomponents)),population), to eval-
uate using SPARQL. The computation would take milliseconds on commodity
hardware, since the program would only contain 14 atoms and 12 rules; the
facts do not need to be represented in the program since we find matches between
datasets to convert or merge only by looking at the definition of correspondences,
i.e., output- and inputmembers.

We may want to allow cycles in the definition of input-/outputmembers, e.g.,
conversion correspondences MIO2EUR and EUR2MIO. In this case we can design
an algorithm that terminates with the application of conversion and merging
correspondences when no new facts can be added to the Global Cube:

Sketch of Proof According to Definition 1 of Drill-Across and Definition 2 of
the Global Cube, an “Integrity Constraint Violation” is returned for a measure
if two input cubes during the computation of the Global Cube contain different
measure values for identical dimension-member combinations.

Only different dimension-member combinations can provide new facts, all
other data cubes either provide facts with the same measure value or an “In-

12

tegrity Constraint Violation”. If dimension-member combinations are limited, so
are derived datasets that provide new facts to the Global Cube.

The number of dimension-member combinations is limited: Considering ds
datasets as special combinations and the order of combining combinations, cc
conversion and mc merging correspondences provide at max (ds+cc+mc)! com-
binations of dimension-member combinations.

In our example, this would result in (3+1+2)! = 720 possible combinations.

5 Evaluation: Integrating Government Statistics

Figure 1 illustrates how a client issues the GDP CAP query (using the query
language MDX) to the designed integration system over a Global Cube defined
by data cubes GDP Per Capita, GDP Components and Population. The integra-
tion engine 1) loads and validates available data cubes defined by QB datasets
(Base-Cube), 2) translates the query over the Global Cube to a logical operator
query plan over the available as well as all derived data cubes, 3) transforms
the logical to a physical operator query plan with iterators that 4) are then ex-
ecuted. Here, MIO2EUR converts “Million Euro” to “Euro”, COMP GDP computes
the Nominal GDP, and COMP GDP CAP computes the GDP Per Capita which in
the Global Cube is brought together with values from the GDP Per Capita data
cube.

Fig. 1. Overview of integration system

We implemented all operations, including the Drill-Across, Convert-Cube,
and Merge-Cubes operations, in OLAP4LD, an Open-Source Java engine for

13

analytical queries over multidimensional datasets published as Linked Data6.
OLAP4LD uses a directed crawling strategy to load and validate all data cubes
into a Sesame Repository (v2.7.10) as embedded triple store. Due to lack of
space, in the further descriptions we assume all available data cubes loaded7.

Given a query and a set of available datasets, the logical query plan is auto-
matically generated per Definition 2 of the Global Cube, and by automatically
applying mappings between shared dimensions and members as well as convert
and merging correspondences.

Drill-Across is implemented as a nested loop join directly over the results of
the OLAP-to-SPARQL algorithm [8]. OWL semantics we evaluate using a dupli-
cation strategy by repeatedly executing SPARQL INSERT queries implementing
entailment rules of equality8.

Every SPARQL query defined by a Convert-Cube and Merge-Cubes opera-
tion is evaluated once and the result is loaded in the triple store for usage by
consecutive operations.

Setup: For the UNEMPLOY query, we created owl:sameAs mappings be-
tween the :geo dimensions and the identifier for Germany :DE and :00 from
Eurostat and Gesis. For EU2020, we selected four and eight EU 2020 Indicator
datasets that surely overlap, e.g., the energy dependence, productivity, and in-
tensity. For GDP CAP, we created a ConversionCorrespondence for MIO2EUR
and MergingCorrespondences for COMPUTE GDP, and COMP GDP CAP.

Every query motivated in our scenario we executed five times on an Ubuntu
12.04 workstation with Intel(R) Core(TM) i5 CPU, M520, 2.40GHz, 8 GB RAM,
64-bit on a JVM (v6) with 512M initial and 1524M maximum memory allocation.

Results from Evaluating Drill-Across: Table 2 gives an overview of
experiment results. We compare query results from previous experiments ex-
ecuting Drill-Across with the OLAP engine Mondrian over MySQL for query
processing (UNEMPLOY 1, EU2020 1a, EU2020 1b) [7] and from executing our
Drill-Across implementation (UNEMPLOY 2, EU2020 2a, EU2020 2b). The ex-
periments are comparable since we used the same machine.

We successfully integrated the GDP Growth from Eurostat9 and the Unem-
ployment Fear from ALLBUS and found overlaps for Germany in 2004 and 2006.
Mappings between implicitly shared dimensions and members were considered.
Also, for the EU2020 query, we successfully integrated four and eight datasets.

Loading and validating datasets takes much less time than with our previous
implementation which results from the directed crawling strategy and from a
switch from qcrumb.com to Sesame as a SPARQL query engine. L&V also in-
cludes the time for reasoning. Most time is spent in executing several queries
for multidimensional elements (MD) and in generating the logical and physical

6 https://code.google.com/p/olap4ld/
7 Additional information can be found on the evaluation website of the paper:
http://linked-data-cubes.org/index.php/Global_Cube_Evaluation_EKAW14

8 http://semanticweb.org/OWLLD/#Rules
9 Apparently, dataset http://estatwrap.ontologycentral.com/id/tsieb020#ds in

Eurostat was replaced by dataset tec00115 after conducting these experiments.

14

Table 2. For every experiment, number of integrated datasets #DS, triples #T, ob-
servations #O, look-ups #LU, and average elapsed query times in sec for loading
and validating datasets (L&V), executing (MD) a certain number of metadata queries
(#MD), generating the logical query plan (LQP), generating the physical query plan
(PQP), executing the physical query plan (EQP), and total elapsed query time (T).

Experiment #DS #T #O #LU L&V MD #MD LQP PQP EQP T

UNEMPLOY 1 2 20,268 350 22 273 - - - - 0.073 273

UNEMPLOY 2 2 3,897 362 12 11 5 41 3 3 0.036 22

EU2020 1a 4 24,636 1,247 26 654 - - - - 0.161 654

EU2020 2a 4 19,714 2,212 12 18 15 67 3 3 0.094 39

EU2020 1b 8 35,482 2,682 34 1,638 - - - - 0.473 1,638

EU2020 2b 8 38,069 3,992 20 47 40 103 6 10 0.151 103

query plans (LQP+PQP). Our experiments with 2, 4, and 8 datasets indicate
that MD, LQP, PQP and EQP increase linearly. LQP includes the time for
interpreting the query language (MDX) and building a nested set of OLAP op-
erations. PQP includes the time to run the OLAP-to-SPARQL algorithm [8].
Executing the SPARQL queries and Drill-Across operations (EQP) only takes a
fraction and is similar to processing time in the OLAP engine [7].

Results from Evaluating Convert-Cube and Merge-Cubes: To show
the feasibility of conversion and merging correspondences, we manually built
the logical query plan as illustrated in Figure 1 for comparing GDP per Capita
from different datasets. Consequently, no time is spent for metadata queries and
generating the logical query plan. For an efficient materialisation of all derived
data cubes, a more scalable RDF engine would be needed.

We successfully executed the GDP CAP query, the resulting cube allows us
to compare computed and the given GDP per Capita as stored in Eurostat. By
the small divergence between the computed and the given values, we presume
that the computations are correct; for instance, for UK in 2010, the Nominal
GDP per Capita is directly given as 27, 800 and computed as 27, 704 Euro per
Inhabitant.

On average, the query takes 246sec. We load 1,015,044 triples. Note, these do
not only come from 10 lookups to the three integrated datasets, but also from
loading derived datasets to the embedded triple store. Similarly, in total, the
engine loads or creates 126,351 observations. The long time of 119sec for the 10
look-ups, loading, and validating results from the fact that integrated datasets
per se are larger than the datasets we have loaded in previous experiments, e.g.,
the Population data cube is described by more than 22MB of RDF/XML.

Generating the physical operator query plan with on average 16sec is fast,
but executing the query plan with an average of 111sec takes as long as loading
and validating. This is because different from the pipelining strategy of the
Drill-Across iterator to directly process the results of a previous iterator, for
Convert-Cube and Merge-Cubes the physical query plan involves materialising
data cubes as derived cubes and storing them in the embedded triple store for

15

the next iterator. From 111sec needed for processing the physical query plan, on
average 91sec (82%) was spent on generating and storing the derived datasets.

6 Related Work

Some authors [1, 6] allow drill-across over cubes with not fully shared dimensions,
e.g., dimensions with different granularity such as monthly and yearly, and for
which one dimension can be defined as the association of several ones for which
a mapping is needed, e.g., latitude/longitude versus point geometry.

Tseng and Chen [13] define several semantic conflicts, e.g., implicitly shared
dimensions and inconsistent measures, that are manually solved using XML
transformations. Different from these approaches to overcome heterogeneities,
we keep a strict Drill-Across definition and allow solving of semantic conflicts
with abstract conversion and merging relationships.

For finding relationships between multidimensional datasets common ontol-
ogy matching approaches are less suitable [15]. Torlone [12] automatically match
heterogeneous dimensions by checking requirements of shared dimensions such as
coherence and soundness; similar to our work, they use joins and materialisation
approaches. We focus on more complex mappings explicitly given by experts.

Wilkinson and Simitsis [14] propose flows of hypercube operators as a con-
ceptual model from which ETL processes can be generated. The Linked-Data-Fu
language [11] uses N3 rules for describing complex data processing interactions
on the Web. A rule engine could possibly improve our query processing approach,
e.g., by bulk-loading, crawling and query processing in parallel threads and if
backtracking from a query is supported. However, N3 does not support functions
such as needed in our conversion and merging correspondences. Also, we provide
an abstraction layer specific to multidimensional datasets published as Linked
Data. Etcheverry and Vaisman [5] map analytical operations to SPARQL over
RDF but do not define multi-cube operations and mappings.

Siegel et al. [10] introduce the notion of semantic values – numeric values ac-
companied by metadata for interpreting the value, e.g., the unit – and propose
conversion functions to facilitate the exchange of distributed datasets by hetero-
geneous information systems. Calvanese et al. [2] describe a rule-based approach
to automatically find the matching between two relational schemas. We extend
their approaches to data cubes published as Linked Data.

Diamantini et al. [4] suggest to uniquely define indicators (measures) as for-
mulas, aggregation functions, semantics (mathematical meaning) of the formula,
and recursive references to other indicators. They use mathematical standards
for describing the semantics of operations (MathML, OpenMath) and use Pro-
log to reason about indicators, e.g., for equality or consistency of indicators.
In contrast, we focus on heterogeneities occurring in terms of dimensions and
members, and allow conversions and combinations.

16

7 Conclusions

As the number of statistical datasets published as Linked Data is growing, cit-
izens and analysts can benefit from methods to integrate national indicators,
despite heterogeneities of data sources. In this paper, we have defined the Global
Cube based on the Drill-Across operation over cubes published as QB datasets.
The number of answers of queries over the Global Cube can be increased via
OWL mappings as well as more complex conversion and merging relationships
between datasets. Results from a scenario integrating government statistics in-
dicate that – if a more scalable RDF engine is used – the operations can provide
the foundations for an automatic integration of datasets.

Acknowledgements. This work was partially supported by the German Re-
search Foundation (I01, SFB/TRR 125 “Cognition-Guided Surgery”), the Ger-
man Federal Ministry of Education and Research (Software Campus, 01IS12051),
and the EU’s 7th Framework Programme (PlanetData, Grant 257641).

References

1. Abelló, A., Samos, J., Saltor, F.: Implementing Operations to Navigate Semantic
Star Schemas. In: Proceedings of DOLAP. ACM Press (2003)

2. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data Inte-
gration in Data Warehousing. International Journal of Cooperative Information
Systems 10, 237–271 (2001)

3. Capadisli, S., Auer, S., Riedl, R.: Linked Statistical Data Analysis. In: ISWC Sem-
Stats (2013)

4. Diamantini, C., Potena, D., Storti, E.: A Logic-Based Formalization of KPIs for
Virtual Enterprises. Advanced Information Systems pp. 274–285 (2013)

5. Etcheverry, L., Vaisman, A.A.: Enhancing OLAP Analysis with Web Cubes. In:
Proceedings of the 9th ESWC. Springer (2012)

6. Gómez, L.I., Gómez, S.A., Vaisman, A.A.: A Generic Data Model and Query Lan-
guage for Spatiotemporal OLAP Cube Analysis Categories and Subject Descrip-
tors. In: Proceedings of EDBT (2012)

7. Kämpgen, B., Harth, A.: Transforming Statistical Linked Data for Use in OLAP
Systems. In: Proceedings of the 7th I-Semantics (2011)

8. Kämpgen, B., Harth, A.: No Size Fits All - Running the Star Schema Benchmark
with SPARQL and RDF Aggregate Views. In: Proceedings of ESWC (2013)

9. Shukla, A., Deshpande, P.M., Naughton, J.F.: Materialized View Selection for
Multi-cube Data Models. In: Proceedings of EDBT. pp. 269–284 (2000)

10. Siegel, M., Sciore, E., Rosenthal, A.: Using semantic values to facilitate inter-
operability among heterogeneous information systems. Transactions on Database
Systems (1994)

11. Stadtmüller, S., Harth, A.: Data-Fu : A Language and an Interpreter for Interaction
with Read / Write Linked Data. In: Proceedings of WWW (2013)

12. Torlone, R.: Two approaches to the integration of heterogeneous data warehouses.
Distributed and Parallel Databases 23(1), 69–97 (2007)

13. Tseng, F., Chen, C.: Integrating heterogeneous data warehouses using XML tech-
nologies. Journal of Information Science 31 (2005)

14. Wilkinson, K., Simitsis, A.: Designing Integration Flows Using Hypercubes. In:
Proceedings of EDBT/ICDT (2011)

17

15. Zapilko, B., Mathiak, B.: Object property matching utilizing the overlap between
imported ontologies. In: The Semantic Web: Trends and Challenges. pp. 737–751.
Lecture Notes in Computer Science (2014)

